IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41314-6.html
   My bibliography  Save this article

A theory for colors of strongly correlated electronic systems

Author

Listed:
  • Swagata Acharya

    (Radboud University
    National Renewable Energy Laboratory)

  • Dimitar Pashov

    (King’s College London)

  • Cedric Weber

    (The Australian National University)

  • Mark Schilfgaarde

    (National Renewable Energy Laboratory)

  • Alexander I. Lichtenstein

    (University of Hamburg
    European X-Ray Free-Electron Laser Facility)

  • Mikhail I. Katsnelson

    (Radboud University)

Abstract

Many strongly correlated transition metal insulators are colored, even though they have band gaps much larger than the highest energy photons from the visible light. An adequate explanation for the color requires a theoretical approach able to compute subgap excitons in periodic crystals, reliably and without free parameters—a formidable challenge. The literature often fails to disentangle two important factors: what makes excitons form and what makes them optically bright. We pick two archetypal cases as examples: NiO with green color and MnF2 with pink color, and employ two kinds of ab initio many body Green’s function theories; the first, a perturbative theory based on low-order extensions of the GW approximation, is able to explain the color in NiO, while the same theory is unable to explain why MnF2 is pink. We show its color originates from higher order spin-flip transitions that modify the optical response, which is contained in dynamical mean-field theory (DMFT). We show that symmetry lowering mechanisms may determine how ‘bright’ these excitons are, but they are not fundamental to their existence.

Suggested Citation

  • Swagata Acharya & Dimitar Pashov & Cedric Weber & Mark Schilfgaarde & Alexander I. Lichtenstein & Mikhail I. Katsnelson, 2023. "A theory for colors of strongly correlated electronic systems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41314-6
    DOI: 10.1038/s41467-023-41314-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41314-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41314-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Albert & K. Sivalertporn & J. Kasprzak & M. Strauß & C. Schneider & S. Höfling & M. Kamp & A. Forchel & S. Reitzenstein & E.A. Muljarov & W. Langbein, 2013. "Microcavity controlled coupling of excitonic qubits," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    2. Meng Wu & Zhenglu Li & Ting Cao & Steven G. Louie, 2019. "Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Ziliang Ye & Ting Cao & Kevin O’Brien & Hanyu Zhu & Xiaobo Yin & Yuan Wang & Steven G. Louie & Xiang Zhang, 2014. "Probing excitonic dark states in single-layer tungsten disulphide," Nature, Nature, vol. 513(7517), pages 214-218, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco L. Ruta & Shuai Zhang & Yinming Shao & Samuel L. Moore & Swagata Acharya & Zhiyuan Sun & Siyuan Qiu & Johannes Geurs & Brian S. Y. Kim & Matthew Fu & Daniel G. Chica & Dimitar Pashov & Xiaod, 2023. "Hyperbolic exciton polaritons in a van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Xing Cheng & Zhixuan Cheng & Cong Wang & Minglai Li & Pingfan Gu & Shiqi Yang & Yanping Li & Kenji Watanabe & Takashi Taniguchi & Wei Ji & Lun Dai, 2021. "Light helicity detector based on 2D magnetic semiconductor CrI3," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    3. Guanghui Cheng & Mohammad Mushfiqur Rahman & Zhiping He & Andres Llacsahuanga Allcca & Avinash Rustagi & Kirstine Aggerbeck Stampe & Yanglin Zhu & Shaohua Yan & Shangjie Tian & Zhiqiang Mao & Hechang , 2022. "Emergence of electric-field-tunable interfacial ferromagnetism in 2D antiferromagnet heterostructures," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Yonggang Zuo & Can Liu & Liping Ding & Ruixi Qiao & Jinpeng Tian & Chang Liu & Qinghe Wang & Guodong Xue & Yilong You & Quanlin Guo & Jinhuan Wang & Ying Fu & Kehai Liu & Xu Zhou & Hao Hong & Muhong W, 2022. "Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Saroj B. Chand & John M. Woods & Jiamin Quan & Enrique Mejia & Takashi Taniguchi & Kenji Watanabe & Andrea Alù & Gabriele Grosso, 2023. "Interaction-driven transport of dark excitons in 2D semiconductors with phonon-mediated optical readout," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Freddie Hendriks & Rafael R. Rojas-Lopez & Bert Koopmans & Marcos H. D. Guimarães, 2024. "Electric control of optically-induced magnetization dynamics in a van der Waals ferromagnetic semiconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Xuezhi Ma & Kaushik Kudtarkar & Yixin Chen & Preston Cunha & Yuan Ma & Kenji Watanabe & Takashi Taniguchi & Xiaofeng Qian & M. Cynthia Hipwell & Zi Jing Wong & Shoufeng Lan, 2022. "Coherent momentum control of forbidden excitons," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Juntao Zhang & Xiaozhi Liu & Yujin Ji & Xuerui Liu & Dong Su & Zhongbin Zhuang & Yu-Chung Chang & Chih-Wen Pao & Qi Shao & Zhiwei Hu & Xiaoqing Huang, 2023. "Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. P. Padmanabhan & F. L. Buessen & R. Tutchton & K. W. C. Kwock & S. Gilinsky & M. C. Lee & M. A. McGuire & S. R. Singamaneni & D. A. Yarotski & A. Paramekanti & J.-X. Zhu & R. P. Prasankumar, 2022. "Coherent helicity-dependent spin-phonon oscillations in the ferromagnetic van der Waals crystal CrI3," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Jinwoong Hwang & Kyoo Kim & Canxun Zhang & Tiancong Zhu & Charlotte Herbig & Sooran Kim & Bongjae Kim & Yong Zhong & Mohamed Salah & Mohamed M. El-Desoky & Choongyu Hwang & Zhi-Xun Shen & Michael F. C, 2022. "Large-gap insulating dimer ground state in monolayer IrTe2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41314-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.