IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41227-4.html
   My bibliography  Save this article

Regulating adsorption performance of zeolites by pre-activation in electric fields

Author

Listed:
  • Kaifei Chen

    (The University of Melbourne)

  • Zhi Yu

    (The University of Melbourne)

  • Seyed Hesam Mousavi

    (The University of Melbourne)

  • Ranjeet Singh

    (The University of Melbourne)

  • Qinfen Gu

    (Australian Synchrotron, ANSTO)

  • Randall Q. Snurr

    (Northwestern University)

  • Paul A. Webley

    (Monash University)

  • Gang Kevin Li

    (The University of Melbourne)

Abstract

While multiple external stimuli (e.g., temperature, light, pressure) have been reported to regulate gas adsorption, limited studies have been conducted on controlling molecular admission in nanopores through the application of electric fields (E-field). Here we show gas adsorption capacity and selectivity in zeolite molecular sieves can be regulated by an external E-field. Through E-field pre-activation during degassing, several zeolites exhibited enhanced CO2 adsorption and decreased CH4 and N2 adsorptions, improving the CO2/CH4 and CO2/N2 separation selectivity by at least 25%. The enhanced separation performance of the zeolites pre-activated by E-field was maintained in multiple adsorption/desorption cycles. Powder X-ray diffraction analysis and ab initio computational studies revealed that the cation relocation and framework expansion induced by the E-field accounted for the changes in gas adsorption capacities. These findings demonstrate a regulation approach to sharpen the molecular sieving capability by E-fields and open new avenues for carbon capture and molecular separations.

Suggested Citation

  • Kaifei Chen & Zhi Yu & Seyed Hesam Mousavi & Ranjeet Singh & Qinfen Gu & Randall Q. Snurr & Paul A. Webley & Gang Kevin Li, 2023. "Regulating adsorption performance of zeolites by pre-activation in electric fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41227-4
    DOI: 10.1038/s41467-023-41227-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41227-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41227-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gang (Kevin) Li & Jin Shang & Qinfen Gu & Rohan V. Awati & Nathan Jensen & Andrew Grant & Xueying Zhang & David S. Sholl & Jefferson Z. Liu & Paul A. Webley & Eric F. May, 2017. "Temperature-regulated guest admission and release in microporous materials," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    2. Steven M. Kuznicki & Valerie A. Bell & Sankar Nair & Hugh W. Hillhouse & Richard M. Jacubinas & Carola M. Braunbarth & Brian H. Toby & Michael Tsapatsis, 2001. "A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules," Nature, Nature, vol. 412(6848), pages 720-724, August.
    3. Peng Guo & Jiho Shin & Alex G. Greenaway & Jung Gi Min & Jie Su & Hyun June Choi & Leifeng Liu & Paul A. Cox & Suk Bong Hong & Paul A. Wright & Xiaodong Zou, 2015. "A zeolite family with expanding structural complexity and embedded isoreticular structures," Nature, Nature, vol. 524(7563), pages 74-78, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingke Yang & Huishan Wang & Julian Y. Zuo & Chun Deng & Bei Liu & Liya Chai & Kun Li & Han Xiao & Peng Xiao & Xiaohui Wang & Wan Chen & Xiaowan Peng & Yu Han & Zixuan Huang & Baocan Dong & Changyu Su, 2022. "Efficient separation of butane isomers via ZIF-8 slurry on laboratory- and pilot-scale," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Yisa Zhou & Ying Wu & Haoyu Wu & Jian Xue & Li Ding & Rui Wang & Haihui Wang, 2022. "Fast hydrogen purification through graphitic carbon nitride nanosheet membranes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Bacsik, Zoltán & Cheung, Ocean & Vasiliev, Petr & Hedin, Niklas, 2016. "Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56," Applied Energy, Elsevier, vol. 162(C), pages 613-621.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41227-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.