IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41016-z.html
   My bibliography  Save this article

Rescue of dendritic cells from glycolysis inhibition improves cancer immunotherapy in mice

Author

Listed:
  • Sahil Inamdar

    (Arizona State University)

  • Abhirami P. Suresh

    (Arizona State University)

  • Joslyn L. Mangal

    (Arizona State University)

  • Nathan D. Ng

    (Arizona State University)

  • Alison Sundem

    (Arizona State University)

  • Christopher Wu

    (Arizona State University)

  • Kelly Lintecum

    (Arizona State University)

  • Abhirami Thumsi

    (Arizona State University)

  • Taravat Khodaei

    (Arizona State University)

  • Michelle Halim

    (Arizona State University)

  • Nicole Appel

    (Arizona State University
    Arizona State University)

  • Madhan Mohan Chandra Sekhar Jaggarapu

    (Arizona State University)

  • Arezoo Esrafili

    (Arizona State University)

  • Jordan R. Yaron

    (Arizona State University)

  • Marion Curtis

    (Mayo Clinic
    Mayo Clinic)

  • Abhinav P. Acharya

    (Arizona State University
    Arizona State University
    Arizona State University
    Arizona State University)

Abstract

Inhibition of glycolysis in immune cells and cancer cells diminishes their activity, and thus combining immunotherapies with glycolytic inhibitors is challenging. Herein, a strategy is presented where glycolysis is inhibited in cancer cells using PFK15 (inhibitor of PFKFB3, rate-limiting step in glycolysis), while simultaneously glycolysis and function is rescued in DCs by delivery of fructose-1,6-biphosphate (F16BP, one-step downstream of PFKFB3). To demonstrate the feasibility of this strategy, vaccine formulations are generated using calcium-phosphate chemistry, that incorporate F16BP, poly(IC) as adjuvant, and phosphorylated-TRP2 peptide antigen and tested in challenging and established YUMM1.1 tumours in immunocompetent female mice. Furthermore, to test the versatility of this strategy, adoptive DC therapy is developed with formulations that incorporate F16BP, poly(IC) as adjuvant and mRNA derived from B16F10 cells as antigens in established B16F10 tumours in immunocompetent female mice. F16BP vaccine formulations rescue DCs in vitro and in vivo, significantly improve the survival of mice, and generate cytotoxic T cell (Tc) responses by elevating Tc1 and Tc17 cells within the tumour. Overall, these results demonstrate that rescuing glycolysis of DCs using metabolite-based formulations can be utilized to generate immunotherapy even in the presence of glycolytic inhibitor.

Suggested Citation

  • Sahil Inamdar & Abhirami P. Suresh & Joslyn L. Mangal & Nathan D. Ng & Alison Sundem & Christopher Wu & Kelly Lintecum & Abhirami Thumsi & Taravat Khodaei & Michelle Halim & Nicole Appel & Madhan Moha, 2023. "Rescue of dendritic cells from glycolysis inhibition improves cancer immunotherapy in mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41016-z
    DOI: 10.1038/s41467-023-41016-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41016-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41016-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jacques Banchereau & Ralph M. Steinman, 1998. "Dendritic cells and the control of immunity," Nature, Nature, vol. 392(6673), pages 245-252, March.
    2. Hannah Guak & Sara Al Habyan & Eric H. Ma & Haya Aldossary & Maia Al-Masri & So Yoon Won & Thomas Ying & Elizabeth D. Fixman & Russell G. Jones & Luke M. McCaffrey & Connie. M. Krawczyk, 2018. "Glycolytic metabolism is essential for CCR7 oligomerization and dendritic cell migration," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xijiao Ren & Zhuo Cheng & Jinming He & Xuemei Yao & Yingqi Liu & Kaiyong Cai & Menghuan Li & Yan Hu & Zhong Luo, 2023. "Inhibition of glycolysis-driven immunosuppression with a nano-assembly enhances response to immune checkpoint blockade therapy in triple negative breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thanh Loc Nguyen & Youngjin Choi & Jihye Im & Hyunsu Shin & Ngoc Man Phan & Min Kyung Kim & Seung Woo Choi & Jaeyun Kim, 2022. "Immunosuppressive biomaterial-based therapeutic vaccine to treat multiple sclerosis via re-establishing immune tolerance," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Kulvinder Kochar Kaur & Gautam Allahbadia & Mandeep Singh, 2016. "Advances in the Therapy of Advanced Ovarian Cancer-Special Emphasis on the PD1/PDL1 Pathway," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 1(2), pages 32-40, December.
    3. Kalijn F. Bol & Gerty Schreibelt & Martine Bloemendal & Wouter W. Willigen & Simone Hins-de Bree & Anna L. Goede & Annemiek J. Boer & Kevin J. H. Bos & Tjitske Duiveman-de Boer & Michel A. M. Olde Nor, 2024. "Adjuvant dendritic cell therapy in stage IIIB/C melanoma: the MIND-DC randomized phase III trial," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Caroline Hoffmann & Floriane Noel & Maximilien Grandclaudon & Lucile Massenet-Regad & Paula Michea & Philemon Sirven & Lilith Faucheux & Aurore Surun & Olivier Lantz & Mylene Bohec & Jian Ye & Weihua , 2022. "PD-L1 and ICOSL discriminate human Secretory and Helper dendritic cells in cancer, allergy and autoimmunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Dominic Henn & Dehua Zhao & Dharshan Sivaraj & Artem Trotsyuk & Clark Andrew Bonham & Katharina S. Fischer & Tim Kehl & Tobias Fehlmann & Autumn H. Greco & Hudson C. Kussie & Sylvia E. Moortgat Illouz, 2023. "Cas9-mediated knockout of Ndrg2 enhances the regenerative potential of dendritic cells for wound healing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Yael Korem & Pablo Szekely & Yuval Hart & Hila Sheftel & Jean Hausser & Avi Mayo & Michael E Rothenberg & Tomer Kalisky & Uri Alon, 2015. "Geometry of the Gene Expression Space of Individual Cells," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-27, July.
    7. Bangyuan Wu & Hengmin Cui & Xi Peng & Jing Fang & Zhicai Zuo & Junliang Deng & Jianying Huang, 2014. "Analysis of the Toll-Like Receptor 2-2 (TLR2-2) and TLR4 mRNA Expression in the Intestinal Mucosal Immunity of Broilers Fed on Diets Supplemented with Nickel Chloride," IJERPH, MDPI, vol. 11(1), pages 1-14, January.
    8. Juraj Adamik & Paul V. Munson & Deena M. Maurer & Felix J. Hartmann & Sean C. Bendall & Rafael J. Argüello & Lisa H. Butterfield, 2023. "Immuno-metabolic dendritic cell vaccine signatures associate with overall survival in vaccinated melanoma patients," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Iraj Hosseini & Lucio Gama & Feilim Mac Gabhann, 2015. "Multiplexed Component Analysis to Identify Genes Contributing to the Immune Response during Acute SIV Infection," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-28, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41016-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.