IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40519-z.html
   My bibliography  Save this article

Cas9-mediated knockout of Ndrg2 enhances the regenerative potential of dendritic cells for wound healing

Author

Listed:
  • Dominic Henn

    (Stanford University
    University of Texas Southwestern Medical Center
    University of Arizona)

  • Dehua Zhao

    (Stanford University)

  • Dharshan Sivaraj

    (Stanford University
    University of Arizona)

  • Artem Trotsyuk

    (Stanford University
    University of Arizona)

  • Clark Andrew Bonham

    (Stanford University)

  • Katharina S. Fischer

    (Stanford University
    University of Arizona)

  • Tim Kehl

    (Saarland University)

  • Tobias Fehlmann

    (Saarland University)

  • Autumn H. Greco

    (Stanford University)

  • Hudson C. Kussie

    (Stanford University
    University of Texas Southwestern Medical Center)

  • Sylvia E. Moortgat Illouz

    (Stanford University)

  • Jagannath Padmanabhan

    (Stanford University)

  • Janos A. Barrera

    (Stanford University)

  • Ulrich Kneser

    (Ruprecht-Karls-University of Heidelberg)

  • Hans-Peter Lenhof

    (Saarland University)

  • Michael Januszyk

    (Stanford University)

  • Benjamin Levi

    (University of Texas Southwestern Medical Center)

  • Andreas Keller

    (Saarland University)

  • Michael T. Longaker

    (Stanford University)

  • Kellen Chen

    (Stanford University
    University of Arizona)

  • Lei S. Qi

    (Stanford University
    Chan Zuckerberg Biohub - San Francisco)

  • Geoffrey C. Gurtner

    (Stanford University
    University of Arizona)

Abstract

Chronic wounds impose a significant healthcare burden to a broad patient population. Cell-based therapies, while having shown benefits for the treatment of chronic wounds, have not yet achieved widespread adoption into clinical practice. We developed a CRISPR/Cas9 approach to precisely edit murine dendritic cells to enhance their therapeutic potential for healing chronic wounds. Using single-cell RNA sequencing of tolerogenic dendritic cells, we identified N-myc downregulated gene 2 (Ndrg2), which marks a specific population of dendritic cell progenitors, as a promising target for CRISPR knockout. Ndrg2-knockout alters the transcriptomic profile of dendritic cells and preserves an immature cell state with a strong pro-angiogenic and regenerative capacity. We then incorporated our CRISPR-based cell engineering within a therapeutic hydrogel for in vivo cell delivery and developed an effective translational approach for dendritic cell-based immunotherapy that accelerated healing of full-thickness wounds in both non-diabetic and diabetic mouse models. These findings could open the door to future clinical trials using safe gene editing in dendritic cells for treating various types of chronic wounds.

Suggested Citation

  • Dominic Henn & Dehua Zhao & Dharshan Sivaraj & Artem Trotsyuk & Clark Andrew Bonham & Katharina S. Fischer & Tim Kehl & Tobias Fehlmann & Autumn H. Greco & Hudson C. Kussie & Sylvia E. Moortgat Illouz, 2023. "Cas9-mediated knockout of Ndrg2 enhances the regenerative potential of dendritic cells for wound healing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40519-z
    DOI: 10.1038/s41467-023-40519-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40519-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40519-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jacques Banchereau & Ralph M. Steinman, 1998. "Dendritic cells and the control of immunity," Nature, Nature, vol. 392(6673), pages 245-252, March.
    2. Waracharee Srifa & Nina Kosaric & Alvaro Amorin & Othmane Jadi & Yujin Park & Sruthi Mantri & Joab Camarena & Geoffrey C. Gurtner & Matthew Porteus, 2020. "Cas9-AAV6-engineered human mesenchymal stromal cells improved cutaneous wound healing in diabetic mice," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    3. Alex Diaz-Papkovich & Luke Anderson-Trocmé & Chief Ben-Eghan & Simon Gravel, 2019. "UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts," PLOS Genetics, Public Library of Science, vol. 15(11), pages 1-24, November.
    4. Peter Gee & Mandy S. Y. Lung & Yuya Okuzaki & Noriko Sasakawa & Takahiro Iguchi & Yukimasa Makita & Hiroyuki Hozumi & Yasutomo Miura & Lucy F. Yang & Mio Iwasaki & Xiou H. Wang & Matthew A. Waller & N, 2020. "Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
    5. Kellen Chen & Sun Hyung Kwon & Dominic Henn & Britta A. Kuehlmann & Ruth Tevlin & Clark A. Bonham & Michelle Griffin & Artem A. Trotsyuk & Mimi R. Borrelli & Chikage Noishiki & Jagannath Padmanabhan &, 2021. "Disrupting biological sensors of force promotes tissue regeneration in large organisms," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thanh Loc Nguyen & Youngjin Choi & Jihye Im & Hyunsu Shin & Ngoc Man Phan & Min Kyung Kim & Seung Woo Choi & Jaeyun Kim, 2022. "Immunosuppressive biomaterial-based therapeutic vaccine to treat multiple sclerosis via re-establishing immune tolerance," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Kulvinder Kochar Kaur & Gautam Allahbadia & Mandeep Singh, 2016. "Advances in the Therapy of Advanced Ovarian Cancer-Special Emphasis on the PD1/PDL1 Pathway," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 1(2), pages 32-40, December.
    3. Kalijn F. Bol & Gerty Schreibelt & Martine Bloemendal & Wouter W. Willigen & Simone Hins-de Bree & Anna L. Goede & Annemiek J. Boer & Kevin J. H. Bos & Tjitske Duiveman-de Boer & Michel A. M. Olde Nor, 2024. "Adjuvant dendritic cell therapy in stage IIIB/C melanoma: the MIND-DC randomized phase III trial," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Caroline Hoffmann & Floriane Noel & Maximilien Grandclaudon & Lucile Massenet-Regad & Paula Michea & Philemon Sirven & Lilith Faucheux & Aurore Surun & Olivier Lantz & Mylene Bohec & Jian Ye & Weihua , 2022. "PD-L1 and ICOSL discriminate human Secretory and Helper dendritic cells in cancer, allergy and autoimmunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Yael Korem & Pablo Szekely & Yuval Hart & Hila Sheftel & Jean Hausser & Avi Mayo & Michael E Rothenberg & Tomer Kalisky & Uri Alon, 2015. "Geometry of the Gene Expression Space of Individual Cells," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-27, July.
    6. Ron Baik & M. Kyle Cromer & Steve E. Glenn & Christopher A. Vakulskas & Kay O. Chmielewski & Amanda M. Dudek & William N. Feist & Julia Klermund & Suzette Shipp & Toni Cathomen & Daniel P. Dever & Mat, 2024. "Transient inhibition of 53BP1 increases the frequency of targeted integration in human hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Jeffrey D. Wall & J. Fah Sathirapongsasuti & Ravi Gupta & Asif Rasheed & Radha Venkatesan & Saurabh Belsare & Ramesh Menon & Sameer Phalke & Anuradha Mittal & John Fang & Deepak Tanneeru & Manjari Des, 2023. "South Asian medical cohorts reveal strong founder effects and high rates of homozygosity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Bangyuan Wu & Hengmin Cui & Xi Peng & Jing Fang & Zhicai Zuo & Junliang Deng & Jianying Huang, 2014. "Analysis of the Toll-Like Receptor 2-2 (TLR2-2) and TLR4 mRNA Expression in the Intestinal Mucosal Immunity of Broilers Fed on Diets Supplemented with Nickel Chloride," IJERPH, MDPI, vol. 11(1), pages 1-14, January.
    9. Iraj Hosseini & Lucio Gama & Feilim Mac Gabhann, 2015. "Multiplexed Component Analysis to Identify Genes Contributing to the Immune Response during Acute SIV Infection," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-28, May.
    10. Cristian Groza & Carl Schwendinger-Schreck & Warren A. Cheung & Emily G. Farrow & Isabelle Thiffault & Juniper Lake & William B. Rizzo & Gilad Evrony & Tom Curran & Guillaume Bourque & Tomi Pastinen, 2024. "Pangenome graphs improve the analysis of structural variants in rare genetic diseases," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Yonger Xue & Yuebao Zhang & Yichen Zhong & Shi Du & Xucheng Hou & Wenqing Li & Haoyuan Li & Siyu Wang & Chang Wang & Jingyue Yan & Diana D. Kang & Binbin Deng & David W. McComb & Darrell J. Irvine & R, 2024. "LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Sahil Inamdar & Abhirami P. Suresh & Joslyn L. Mangal & Nathan D. Ng & Alison Sundem & Christopher Wu & Kelly Lintecum & Abhirami Thumsi & Taravat Khodaei & Michelle Halim & Nicole Appel & Madhan Moha, 2023. "Rescue of dendritic cells from glycolysis inhibition improves cancer immunotherapy in mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Wenyi Zheng & Julia Rädler & Helena Sork & Zheyu Niu & Samantha Roudi & Jeremy P. Bost & André Görgens & Ying Zhao & Doste R. Mamand & Xiuming Liang & Oscar P. B. Wiklander & Taavi Lehto & Dhanu Gupta, 2023. "Identification of scaffold proteins for improved endogenous engineering of extracellular vesicles," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40519-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.