IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39582-3.html
   My bibliography  Save this article

Hydrodynamic spin-orbit coupling in asynchronous optically driven micro-rotors

Author

Listed:
  • Alvin Modin

    (New York University
    Johns Hopkins University)

  • Matan Yah Zion

    (New York University
    Tel Aviv University)

  • Paul M. Chaikin

    (New York University)

Abstract

Vortical flows of rotating particles describe interactions ranging from molecular machines to atmospheric dynamics. Yet to date, direct observation of the hydrodynamic coupling between artificial micro-rotors has been restricted by the details of the chosen drive, either through synchronization (using external magnetic fields) or confinement (using optical tweezers). Here we present a new active system that illuminates the interplay of rotation and translation in free rotors. We develop a non-tweezing circularly polarized beam that simultaneously rotates hundreds of silica-coated birefringent colloids. The particles rotate asynchronously in the optical torque field while freely diffusing in the plane. We observe that neighboring particles orbit each other with an angular velocity that depends on their spins. We derive an analytical model in the Stokes limit for pairs of spheres that quantitatively explains the observed dynamics. We then find that the geometrical nature of the low Reynolds fluid flow results in a universal hydrodynamic spin-orbit coupling. Our findings are of significance for the understanding and development of far-from-equilibrium materials.

Suggested Citation

  • Alvin Modin & Matan Yah Zion & Paul M. Chaikin, 2023. "Hydrodynamic spin-orbit coupling in asynchronous optically driven micro-rotors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39582-3
    DOI: 10.1038/s41467-023-39582-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39582-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39582-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Naomi Oppenheimer & David B. Stein & Matan Yah Ben Zion & Michael J. Shelley, 2022. "Hyperuniformity and phase enrichment in vortex and rotor assemblies," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Christian Scholz & Michael Engel & Thorsten Pöschel, 2018. "Publisher Correction: Rotating robots move collectively and self-organize," Nature Communications, Nature, vol. 9(1), pages 1-2, December.
    3. Debarghya Banerjee & Anton Souslov & Alexander G. Abanov & Vincenzo Vitelli, 2017. "Odd viscosity in chiral active fluids," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    4. Tzer Han Tan & Alexander Mietke & Junang Li & Yuchao Chen & Hugh Higinbotham & Peter J. Foster & Shreyas Gokhale & Jörn Dunkel & Nikta Fakhri, 2022. "Odd dynamics of living chiral crystals," Nature, Nature, vol. 607(7918), pages 287-293, July.
    5. Christian Scholz & Michael Engel & Thorsten Pöschel, 2018. "Rotating robots move collectively and self-organize," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung Wing Chan & Daihui Wu & Kaiyao Qiao & Kin Long Fong & Zhiyu Yang & Yilong Han & Rui Zhang, 2024. "Chiral active particles are sensitive reporters to environmental geometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Itai Carmeli & Celine M. Bounioux & Philip Mickel & Mark B. Richardson & Yael Templeman & Joel M. P. Scofield & Greg G. Qiao & Brian Ashley Rosen & Yelena Yusupov & Louisa Meshi & Nicolas H. Voelcker , 2023. "Unidirectional rotation of micromotors on water powered by pH-controlled disassembly of chiral molecular crystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. C. J. O. Reichhardt & C. Reichhardt, 2022. "Dynamic phases and reentrant Hall effect for vortices and skyrmions on periodic pinning arrays," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-16, August.
    4. David T. Limmer & Chloe Y. Gao & Anthony R. Poggioli, 2021. "A large deviation theory perspective on nanoscale transport phenomena," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(7), pages 1-16, July.
    5. Mallikarjun, Rahul & Pal, Arnab, 2023. "Chiral run-and-tumble walker: Transport and optimizing search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    6. Jingjing Li & Yihan Cui & Yi-Lin Lu & Yunfei Zhang & Kaihuang Zhang & Chaonan Gu & Kaifang Wang & Yujia Liang & Chun-Sen Liu, 2023. "Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Antoine Aubret & Quentin Martinet & Jeremie Palacci, 2021. "Metamachines of pluripotent colloids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Qianhong Yang & Maoqiang Jiang & Francesco Picano & Lailai Zhu, 2024. "Shaping active matter from crystalline solids to active turbulence," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39582-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.