IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60518-6.html
   My bibliography  Save this article

Dynamical patterns and nonreciprocal effective interactions in an active-passive mixture through exact hydrodynamic analysis

Author

Listed:
  • James Mason

    (University of Cambridge)

  • Robert L. Jack

    (University of Cambridge
    University of Cambridge)

  • Maria Bruna

    (University of Cambridge
    University of Oxford)

Abstract

The formation of dynamical patterns is one of the most striking features of nonequilibrium physical systems. Recent work has shown that such patterns arise generically from forces that violate Newton’s third law, known as nonreciprocal interactions. These nonequilibrium phenomena are challenging for modern theories. Here, we introduce a model mixture of active (self-propelled) and passive (diffusive) particles amenable to exact mathematical analysis. We exploit state-of-the-art methods to derive exact hydrodynamic equations for the particle densities, which reveal effective nonreciprocal couplings between the active and passive species. We study the resulting collective behavior, including the linear stability of homogeneous states and phase coexistence in large systems. This reveals a novel phase diagram with the spinodal associated with active phase separation protruding through the associated binodal, heralding the emergence of dynamical steady states. We analyze these states in the thermodynamic limit of large system size, showing, for example, that sharp interfaces may travel at finite velocities, but traveling phase-separated states are forbidden. The model’s mathematical tractability enables precise new conclusions beyond those available by numerical simulation of particle models or field theories.

Suggested Citation

  • James Mason & Robert L. Jack & Maria Bruna, 2025. "Dynamical patterns and nonreciprocal effective interactions in an active-passive mixture through exact hydrodynamic analysis," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60518-6
    DOI: 10.1038/s41467-025-60518-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60518-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60518-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tzer Han Tan & Alexander Mietke & Junang Li & Yuchao Chen & Hugh Higinbotham & Peter J. Foster & Shreyas Gokhale & Jörn Dunkel & Nikta Fakhri, 2022. "Odd dynamics of living chiral crystals," Nature, Nature, vol. 607(7918), pages 287-293, July.
    2. Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Michel Fruchart & Ryo Hanai & Peter B. Littlewood & Vincenzo Vitelli, 2021. "Non-reciprocal phase transitions," Nature, Nature, vol. 592(7854), pages 363-369, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Joel W. Newbolt & Nickolas Lewis & Mathilde Bleu & Jiajie Wu & Christiana Mavroyiakoumou & Sophie Ramananarivo & Leif Ristroph, 2024. "Flow interactions lead to self-organized flight formations disrupted by self-amplifying waves," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Alvin Modin & Matan Yah Zion & Paul M. Chaikin, 2023. "Hydrodynamic spin-orbit coupling in asynchronous optically driven micro-rotors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Jing Wang & Gao Wang & Huaicheng Chen & Yanping Liu & Peilong Wang & Daming Yuan & Xingyu Ma & Xiangyu Xu & Zhengdong Cheng & Baohua Ji & Mingcheng Yang & Jianwei Shuai & Fangfu Ye & Jin Wang & Yang J, 2024. "Robo-Matter towards reconfigurable multifunctional smart materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Jyoti Prasad Banerjee & Rituparno Mandal & Deb Sankar Banerjee & Shashi Thutupalli & Madan Rao, 2022. "Unjamming and emergent nonreciprocity in active ploughing through a compressible viscoelastic fluid," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. John Parker & Spoorthi Nagasamudram & Curtis Peterson & Yanzeng Li & Sina Soleimanikahnoj & Stuart A. Rice & Norbert F. Scherer, 2025. "Symmetry breaking-induced N-body electrodynamic forces in optical matter systems," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Guy Amichay & Liang Li & Máté Nagy & Iain D. Couzin, 2024. "Revealing the mechanism and function underlying pairwise temporal coupling in collective motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Chung Wing Chan & Daihui Wu & Kaiyao Qiao & Kin Long Fong & Zhiyu Yang & Yilong Han & Rui Zhang, 2024. "Chiral active particles are sensitive reporters to environmental geometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Jingjing Li & Yihan Cui & Yi-Lin Lu & Yunfei Zhang & Kaihuang Zhang & Chaonan Gu & Kaifang Wang & Yujia Liang & Chun-Sen Liu, 2023. "Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Seungjae Lee & Lennart J. Kuklinski & Marc Timme, 2025. "Extreme synchronization transitions," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    12. Martorell, Carles & Calvo, Rubén & Annibale, Alessia & Muñoz, Miguel A., 2024. "Dynamically selected steady states and criticality in non-reciprocal networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    13. Xiangzun Wang & Pin-Chuan Chen & Klaus Kroy & Viktor Holubec & Frank Cichos, 2023. "Spontaneous vortex formation by microswimmers with retarded attractions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Zhou, Yongjian & Zheng, Zhicheng & Wang, Tao & Peng, Xingguang, 2024. "Swarm dynamics of delayed self-propelled particles with non-reciprocal interactions," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    15. Seidel, Thomas G. & Javaloyes, Julien & Gurevich, Svetlana V., 2025. "Coherent pulse interactions in mode-locked semiconductor lasers," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
    16. Lu, Yichen & Xu, Yixin & Cai, Wanrou & Tian, Zhuanghe & Xu, Jie & Wang, Simin & Zhu, Tong & Liu, Yali & Wang, Mengchu & Zhou, Yilin & Yan, Chengxu & Li, Chenlu & Zheng, Zhigang, 2025. "Self-organized circling, clustering and swarming in populations of chiral swarmalators," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    17. Wu, Zihua & Zhang, Yinxing & Bao, Han & Lan, Rushi & Hua, Zhongyun, 2024. "nD-CS: A circularly shifting chaotic map generation method," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    18. Helena Massana-Cid & Claudio Maggi & Nicoletta Gnan & Giacomo Frangipane & Roberto Di Leonardo, 2024. "Multiple temperatures and melting of a colloidal active crystal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Dennis Hardt & Reza Doostani & Sebastian Diehl & Nina Ser & Achim Rosch, 2025. "Propelling ferrimagnetic domain walls by dynamical frustration," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    20. Solenn Riedel & Ludwig A. Hoffmann & Luca Giomi & Daniela J. Kraft, 2024. "Designing highly efficient interlocking interactions in anisotropic active particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60518-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.