IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39385-6.html
   My bibliography  Save this article

Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive

Author

Listed:
  • Zhaoheng Liang

    (Sun Yat-sen University)

  • Fei Tian

    (Sun Yat-sen University)

  • Gongzheng Yang

    (Sun Yat-sen University)

  • Chengxin Wang

    (Sun Yat-sen University
    Sun Yat-sen University)

Abstract

Aqueous sodium-ion batteries (AIBs) are promising candidates for large-scale energy storage due to their safe operational properties and low cost. However, AIBs have low specific energy (i.e.,

Suggested Citation

  • Zhaoheng Liang & Fei Tian & Gongzheng Yang & Chengxin Wang, 2023. "Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39385-6
    DOI: 10.1038/s41467-023-39385-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39385-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39385-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuesheng Wang & Jue Liu & Byungju Lee & Ruimin Qiao & Zhenzhong Yang & Shuyin Xu & Xiqian Yu & Lin Gu & Yong-Sheng Hu & Wanli Yang & Kisuk Kang & Hong Li & Xiao-Qing Yang & Liquan Chen & Xuejie Huang, 2015. "Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries," Nature Communications, Nature, vol. 6(1), pages 1-10, May.
    2. Wanlin Wang & Yong Gang & Zhe Hu & Zichao Yan & Weijie Li & Yongcheng Li & Qin-Fen Gu & Zhixing Wang & Shu-Lei Chou & Hua-Kun Liu & Shi-Xue Dou, 2020. "Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Xiaoqiang Shan & Fenghua Guo & Daniel S. Charles & Zachary Lebens-Higgins & Sara Abdel Razek & Jinpeng Wu & Wenqian Xu & Wanli Yang & Katharine L. Page & Joerg C. Neuefeind & Mikhail Feygenson & Louis, 2019. "Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Junmin Ge & Ling Fan & Apparao M. Rao & Jiang Zhou & Bingan Lu, 2022. "Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries," Nature Sustainability, Nature, vol. 5(3), pages 225-234, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Dang & Wei Zhang & Jiqing Liu & Liting Wang & Deli Wu & Dejin Wang & Zhendong Lei & Liang Tang, 2023. "Bias-free driven ion assisted photoelectrochemical system for sustainable wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Han Wu & Junnan Hao & Yunling Jiang & Yiran Jiao & Jiahao Liu & Xin Xu & Kenneth Davey & Chunsheng Wang & Shi-Zhang Qiao, 2024. "Alkaline-based aqueous sodium-ion batteries for large-scale energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Wen Zhu & Yuesheng Wang & Dongqiang Liu & Vincent Gariépy & Catherine Gagnon & Ashok Vijh & Michel L. Trudeau & Karim Zaghib, 2018. "Application of Operando X-ray Diffractometry in Various Aspects of the Investigations of Lithium/Sodium-Ion Batteries," Energies, MDPI, vol. 11(11), pages 1-41, November.
    4. Xu, Nengneng & Zhang, Yanxing & Wang, Yudong & Wang, Min & Su, Tianshun & Coco, Cameron A. & Qiao, Jinli & Zhou, Xiao-Dong, 2020. "Hierarchical bifunctional catalysts with tailored catalytic activity for high-energy rechargeable Zn-air batteries," Applied Energy, Elsevier, vol. 279(C).
    5. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Xinhua Zheng & Zaichun Liu & Jifei Sun & Ruihao Luo & Kui Xu & Mingyu Si & Ju Kang & Yuan Yuan & Shuang Liu & Touqeer Ahmad & Taoli Jiang & Na Chen & Mingming Wang & Yan Xu & Mingyan Chuai & Zhengxin , 2023. "Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Shuo Sun & Zhen Han & Wei Liu & Qiuying Xia & Liang Xue & Xincheng Lei & Teng Zhai & Dong Su & Hui Xia, 2023. "Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Zishuai Zhang & Yilong Zhu & Miao Yu & Yan Jiao & Yan Huang, 2022. "Development of long lifespan high-energy aqueous organic||iodine rechargeable batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Kangkang Ge & Hui Shao & Encarnacion Raymundo-Piñero & Pierre-Louis Taberna & Patrice Simon, 2024. "Cation desolvation-induced capacitance enhancement in reduced graphene oxide (rGO)," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39385-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.