IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38527-0.html
   My bibliography  Save this article

Higher-order epistasis shapes natural variation in germ stem cell niche activity

Author

Listed:
  • Sarah R. Fausett

    (Université Côte d’Azur, CNRS, Inserm, IBV
    University of North Carolina Wilmington)

  • Asma Sandjak

    (Université Côte d’Azur, CNRS, Inserm, IBV)

  • Bénédicte Billard

    (Université Côte d’Azur, CNRS, Inserm, IBV)

  • Christian Braendle

    (Université Côte d’Azur, CNRS, Inserm, IBV)

Abstract

To study how natural allelic variation explains quantitative developmental system variation, we characterized natural differences in germ stem cell niche activity, measured as progenitor zone (PZ) size, between two Caenorhabditis elegans isolates. Linkage mapping yielded candidate loci on chromosomes II and V, and we found that the isolate with a smaller PZ size harbours a 148 bp promoter deletion in the Notch ligand, lag-2/Delta, a central signal promoting germ stem cell fate. As predicted, introducing this deletion into the isolate with a large PZ resulted in a smaller PZ size. Unexpectedly, restoring the deleted ancestral sequence in the isolate with a smaller PZ did not increase—but instead further reduced—PZ size. These seemingly contradictory phenotypic effects are explained by epistatic interactions between the lag-2/Delta promoter, the chromosome II locus, and additional background loci. These results provide first insights into the quantitative genetic architecture regulating an animal stem cell system.

Suggested Citation

  • Sarah R. Fausett & Asma Sandjak & Bénédicte Billard & Christian Braendle, 2023. "Higher-order epistasis shapes natural variation in germ stem cell niche activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38527-0
    DOI: 10.1038/s41467-023-38527-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38527-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38527-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arjun Raj & Scott A. Rifkin & Erik Andersen & Alexander van Oudenaarden, 2010. "Variability in gene expression underlies incomplete penetrance," Nature, Nature, vol. 463(7283), pages 913-918, February.
    2. Sandeep Gopal & Aqilah Amran & Andre Elton & Leelee Ng & Roger Pocock, 2021. "A somatic proteoglycan controls Notch-directed germ cell fate," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Sneha L. Koneru & Mark Hintze & Dimitris Katsanos & Michalis Barkoulas, 2021. "Cryptic genetic variation in a heat shock protein modifies the outcome of a mutation affecting epidermal stem cell development in C. elegans," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Manjunatha Thondamal & Michael Witting & Philippe Schmitt-Kopplin & Hugo Aguilaniu, 2014. "Steroid hormone signalling links reproduction to lifespan in dietary-restricted Caenorhabditis elegans," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satish A Eraly, 2014. "Striking Differences between Knockout and Wild-Type Mice in Global Gene Expression Variability," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    2. Aisha Hassan & Li Cui-Xia & Naveed Ahmad & Muzaffar Iqbal & Kramat Hussain & Muhammad Ishtiaq & Maira Abrar, 2021. "Safety Failure Factors Affecting Dairy Supply Chain: Insights from a Developing Economy," Sustainability, MDPI, vol. 13(17), pages 1-24, August.
    3. Chen, Aimin & Tian, Tianhai & Chen, Yiren & Zhou, Tianshou, 2022. "Stochastic analysis of a complex gene-expression model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    4. Kemal Keseroglu & Oriana Q. H. Zinani & Sevdenur Keskin & Hannah Seawall & Eslim E. Alpay & Ertuğrul M. Özbudak, 2023. "Stochastic gene expression and environmental stressors trigger variable somite segmentation phenotypes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Elijah Roberts & Andrew Magis & Julio O Ortiz & Wolfgang Baumeister & Zaida Luthey-Schulten, 2011. "Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-21, March.
    6. McFarland, Michael J. & Wagner, Brandon G., 2015. "Does a college education reduce depressive symptoms in American young adults?," Social Science & Medicine, Elsevier, vol. 146(C), pages 75-84.
    7. Lixin Wang & B. Bishal Paudel & R. Anthony McKnight & Kevin A. Janes, 2023. "Nucleocytoplasmic transport of active HER2 causes fractional escape from the DCIS-like state," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Suzanne Gaudet & Sabrina L Spencer & William W Chen & Peter K Sorger, 2012. "Exploring the Contextual Sensitivity of Factors that Determine Cell-to-Cell Variability in Receptor-Mediated Apoptosis," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-15, April.
    9. Shengjie Fan & Yingxuan Yan & Ying Xia & Zhenyu Zhou & Lingling Luo & Mengnan Zhu & Yongli Han & Deqiang Yao & Lijun Zhang & Minglv Fang & Lina Peng & Jing Yu & Ying Liu & Xiaoyan Gao & Huida Guan & H, 2023. "Pregnane X receptor agonist nomilin extends lifespan and healthspan in preclinical models through detoxification functions," Nature Communications, Nature, vol. 14(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38527-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.