IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38412-w.html
   My bibliography  Save this article

Two-colour dissipative solitons and breathers in microresonator second-harmonic generation

Author

Listed:
  • Juanjuan Lu

    (Yale University
    ShanghaiTech University)

  • Danila N. Puzyrev

    (University of Bath
    University of Bath)

  • Vladislav V. Pankratov

    (University of Bath
    University of Bath)

  • Dmitry V. Skryabin

    (University of Bath
    University of Bath)

  • Fengyan Yang

    (Yale University)

  • Zheng Gong

    (Yale University)

  • Joshua B. Surya

    (Yale University)

  • Hong X. Tang

    (Yale University)

Abstract

Frequency conversion of dissipative solitons associated with the generation of broadband optical frequency combs having a tooth spacing of hundreds of giga-hertz is a topical challenge holding the key to practical applications in precision spectroscopy and data processing. The work in this direction is underpinned by fundamental problems in nonlinear and quantum optics. Here, we present the dissipative two-colour bright-bright and dark-dark solitons in a quasi-phase-matched microresonator pumped for the second-harmonic generation in the near-infrared spectral range. We also found the breather states associated with the pulse front motion and collisions. The soliton regime is found to be typical in slightly phase-mismatched resonators, while the phase-matched ones reveal broader but incoherent spectra and higher-order harmonic generation. Soliton and breather effects reported here exist for the negative tilt of the resonance line, which is possible only via the dominant contribution of second-order nonlinearity.

Suggested Citation

  • Juanjuan Lu & Danila N. Puzyrev & Vladislav V. Pankratov & Dmitry V. Skryabin & Fengyan Yang & Zheng Gong & Joshua B. Surya & Hong X. Tang, 2023. "Two-colour dissipative solitons and breathers in microresonator second-harmonic generation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38412-w
    DOI: 10.1038/s41467-023-38412-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38412-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38412-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mengjie Yu & Jae K. Jang & Yoshitomo Okawachi & Austin G. Griffith & Kevin Luke & Steven A. Miller & Xingchen Ji & Michal Lipson & Alexander L. Gaeta, 2017. "Breather soliton dynamics in microresonators," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    2. Cheng Wang & Mian Zhang & Mengjie Yu & Rongrong Zhu & Han Hu & Marko Loncar, 2019. "Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    3. Su-Peng Yu & Erwan Lucas & Jizhao Zang & Scott B. Papp, 2022. "A continuum of bright and dark-pulse states in a photonic-crystal resonator," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Xianwen Liu & Zheng Gong & Alexander W. Bruch & Joshua B. Surya & Juanjuan Lu & Hong X. Tang, 2021. "Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Pablo Marin-Palomo & Juned N. Kemal & Maxim Karpov & Arne Kordts & Joerg Pfeifle & Martin H. P. Pfeiffer & Philipp Trocha & Stefan Wolf & Victor Brasch & Miles H. Anderson & Ralf Rosenberger & Kovendh, 2017. "Microresonator-based solitons for massively parallel coherent optical communications," Nature, Nature, vol. 546(7657), pages 274-279, June.
    6. E. Lucas & M. Karpov & H. Guo & M. L. Gorodetsky & T. J. Kippenberg, 2017. "Breathing dissipative solitons in optical microresonators," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menghua Zhang & Shulin Ding & Xinxin Li & Keren Pu & Shujian Lei & Min Xiao & Xiaoshun Jiang, 2024. "Strong interactions between solitons and background light in Brillouin-Kerr microcombs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Xiuqi Wu & Ying Zhang & Junsong Peng & Sonia Boscolo & Christophe Finot & Heping Zeng, 2022. "Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Chenghao Lao & Xing Jin & Lin Chang & Heming Wang & Zhe Lv & Weiqiang Xie & Haowen Shu & Xingjun Wang & John E. Bowers & Qi-Fan Yang, 2023. "Quantum decoherence of dark pulses in optical microresonators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Ronit Sohanpal & Haonan Ren & Li Shen & Callum Deakin & Alexander M. Heidt & Thomas W. Hawkins & John Ballato & Ursula J. Gibson & Anna C. Peacock & Zhixin Liu, 2022. "All-fibre heterogeneously-integrated frequency comb generation using silicon core fibre," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Giovanni Finco & Gaoyuan Li & David Pohl & Marc Reig Escalé & Andreas Maeder & Fabian Kaufmann & Rachel Grange, 2024. "Monolithic thin-film lithium niobate broadband spectrometer with one nanometre resolution," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Mingming Nie & Kunpeng Jia & Yijun Xie & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2022. "Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. J. M. Chavez Boggio & D. Bodenmüller & S. Ahmed & S. Wabnitz & D. Modotto & T. Hansson, 2022. "Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Rui Niu & Ming Li & Shuai Wan & Yu Robert Sun & Shui-Ming Hu & Chang-Ling Zou & Guang-Can Guo & Chun-Hua Dong, 2023. "kHz-precision wavemeter based on reconfigurable microsoliton," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    10. Mikhail Churaev & Rui Ning Wang & Annina Riedhauser & Viacheslav Snigirev & Terence Blésin & Charles Möhl & Miles H. Anderson & Anat Siddharth & Youri Popoff & Ute Drechsler & Daniele Caimi & Simon Hö, 2023. "A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Chao Xiang & Joel Guo & Warren Jin & Lue Wu & Jonathan Peters & Weiqiang Xie & Lin Chang & Boqiang Shen & Heming Wang & Qi-Fan Yang & David Kinghorn & Mario Paniccia & Kerry J. Vahala & Paul A. Morton, 2021. "High-performance lasers for fully integrated silicon nitride photonics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Arkadev Roy & Luis Ledezma & Luis Costa & Robert Gray & Ryoto Sekine & Qiushi Guo & Mingchen Liu & Ryan M. Briggs & Alireza Marandi, 2023. "Visible-to-mid-IR tunable frequency comb in nanophotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Yong Geng & Heng Zhou & Xinjie Han & Wenwen Cui & Qiang Zhang & Boyuan Liu & Guangwei Deng & Qiang Zhou & Kun Qiu, 2022. "Coherent optical communications using coherence-cloned Kerr soliton microcombs," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Jingwei Ling & Zhengdong Gao & Shixin Xue & Qili Hu & Mingxiao Li & Kaibo Zhang & Usman A. Javid & Raymond Lopez-Rios & Jeremy Staffa & Qiang Lin, 2024. "Electrically empowered microcomb laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Miles H. Anderson & Wenle Weng & Grigory Lihachev & Alexey Tikan & Junqiu Liu & Tobias J. Kippenberg, 2022. "Zero dispersion Kerr solitons in optical microresonators," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Rebecca Cheng & Mengjie Yu & Amirhassan Shams-Ansari & Yaowen Hu & Christian Reimer & Mian Zhang & Marko Lončar, 2024. "Frequency comb generation via synchronous pumped χ(3) resonator on thin-film lithium niobate," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Timothy P. McKenna & Hubert S. Stokowski & Vahid Ansari & Jatadhari Mishra & Marc Jankowski & Christopher J. Sarabalis & Jason F. Herrmann & Carsten Langrock & Martin M. Fejer & Amir H. Safavi-Naeini, 2022. "Ultra-low-power second-order nonlinear optics on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Ki Youl Yang & Chinmay Shirpurkar & Alexander D. White & Jizhao Zang & Lin Chang & Farshid Ashtiani & Melissa A. Guidry & Daniil M. Lukin & Srinivas V. Pericherla & Joshua Yang & Hyounghan Kwon & Jess, 2022. "Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Su-Peng Yu & Erwan Lucas & Jizhao Zang & Scott B. Papp, 2022. "A continuum of bright and dark-pulse states in a photonic-crystal resonator," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38412-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.