IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33525-0.html
   My bibliography  Save this article

Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers

Author

Listed:
  • Xiuqi Wu

    (East China Normal University)

  • Ying Zhang

    (East China Normal University)

  • Junsong Peng

    (East China Normal University
    Shanxi University)

  • Sonia Boscolo

    (Aston University)

  • Christophe Finot

    (Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS—Université de Bourgogne Franche-Comté)

  • Heping Zeng

    (East China Normal University
    Chongqing Institute of East China Normal University
    Shanghai Research Center for Quantum Sciences)

Abstract

Nonlinear systems with two competing frequencies show locking or resonances. In lasers, the two interacting frequencies can be the cavity repetition rate and a frequency externally applied to the system. Conversely, the excitation of breather oscillations in lasers naturally triggers a second characteristic frequency in the system, therefore showing competition between the cavity repetition rate and the breathing frequency. Yet, the link between breathing solitons and frequency locking is missing. Here we demonstrate frequency locking at Farey fractions of a breather laser. The winding numbers exhibit the hierarchy of the Farey tree and the structure of a devil’s staircase. Numerical simulations of a discrete laser model confirm the experimental findings. The breather laser may therefore serve as a simple test bed to explore ubiquitous synchronization dynamics of nonlinear systems. The locked breathing frequencies feature a high signal-to-noise ratio and can give rise to dense radio-frequency combs, which are attractive for applications.

Suggested Citation

  • Xiuqi Wu & Ying Zhang & Junsong Peng & Sonia Boscolo & Christophe Finot & Heping Zeng, 2022. "Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33525-0
    DOI: 10.1038/s41467-022-33525-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33525-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33525-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mengjie Yu & Jae K. Jang & Yoshitomo Okawachi & Austin G. Griffith & Kevin Luke & Steven A. Miller & Xingchen Ji & Michal Lipson & Alexander L. Gaeta, 2017. "Breather soliton dynamics in microresonators," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    2. Pierre Suret & Rebecca El Koussaifi & Alexey Tikan & Clément Evain & Stéphane Randoux & Christophe Szwaj & Serge Bielawski, 2016. "Single-shot observation of optical rogue waves in integrable turbulence using time microscopy," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    3. J. Zhang & P. W. Hess & A. Kyprianidis & P. Becker & A. Lee & J. Smith & G. Pagano & I.-D. Potirniche & A. C. Potter & A. Vishwanath & N. Y. Yao & C. Monroe, 2017. "Observation of a discrete time crystal," Nature, Nature, vol. 543(7644), pages 217-220, March.
    4. Laurent Larger & Bogdan Penkovsky & Yuri Maistrenko, 2015. "Laser chimeras as a paradigm for multistable patterns in complex systems," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    5. E. Lucas & M. Karpov & H. Guo & M. L. Gorodetsky & T. J. Kippenberg, 2017. "Breathing dissipative solitons in optical microresonators," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menghua Zhang & Shulin Ding & Xinxin Li & Keren Pu & Shujian Lei & Min Xiao & Xiaoshun Jiang, 2024. "Strong interactions between solitons and background light in Brillouin-Kerr microcombs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Juanjuan Lu & Danila N. Puzyrev & Vladislav V. Pankratov & Dmitry V. Skryabin & Fengyan Yang & Zheng Gong & Joshua B. Surya & Hong X. Tang, 2023. "Two-colour dissipative solitons and breathers in microresonator second-harmonic generation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Reinhold Kleiner & Xianjing Zhou & Eric Dorsch & Xufeng Zhang & Dieter Koelle & Dafei Jin, 2021. "Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Rybalova, E.V. & Zakharova, A. & Strelkova, G.I., 2021. "Interplay between solitary states and chimeras in multiplex neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Seyed Danial Hashemi & Sunil Mittal, 2024. "Floquet topological dissipative Kerr solitons and incommensurate frequency combs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Agafontsev, Dmitry S. & Gelash, Andrey A. & Mullyadzhanov, Rustam I. & Zakharov, Vladimir E., 2023. "Bound-state soliton gas as a limit of adiabatically growing integrable turbulence," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. J. M. Chavez Boggio & D. Bodenmüller & S. Ahmed & S. Wabnitz & D. Modotto & T. Hansson, 2022. "Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Liang Xiang & Wenjie Jiang & Zehang Bao & Zixuan Song & Shibo Xu & Ke Wang & Jiachen Chen & Feitong Jin & Xuhao Zhu & Zitian Zhu & Fanhao Shen & Ning Wang & Chuanyu Zhang & Yaozu Wu & Yiren Zou & Jiar, 2024. "Long-lived topological time-crystalline order on a quantum processor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. E. J. Wildman & G. B. Lawrence & A. Walsh & K. Morita & S. Simpson & C. Ritter & G. B. G. Stenning & A. M. Arevalo-Lopez & A. C. Mclaughlin, 2023. "Observation of an exotic insulator to insulator transition upon electron doping the Mott insulator CeMnAsO," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Robert M. Gray & Mingchen Liu & Selina Zhou & Arkadev Roy & Luis Ledezma & Alireza Marandi, 2024. "Quadratic-soliton-enhanced mid-IR molecular sensing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Wang, Haotian & Li, Xin & Zhou, Qin & Liu, Wenjun, 2023. "Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. L. J. Stanley & Ping V. Lin & J. Jaroszyński & Dragana Popović, 2023. "Screening the Coulomb interaction leads to a prethermal regime in two-dimensional bad conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Bang Liu & Li-Hua Zhang & Qi-Feng Wang & Yu Ma & Tian-Yu Han & Jun Zhang & Zheng-Yuan Zhang & Shi-Yao Shao & Qing Li & Han-Chao Chen & Bao-Sen Shi & Dong-Sheng Ding, 2024. "Higher-order and fractional discrete time crystals in Floquet-driven Rydberg atoms," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Ferré, M.A., 2023. "Critical visit to the chimera world," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    15. Shepelev, I.A. & Bukh, A.V. & Strelkova, G.I., 2022. "Anti-phase synchronization of waves in a multiplex network of van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    16. Davide Pierangeli & Giordano Perini & Valentina Palmieri & Ivana Grecco & Ginevra Friggeri & Marco Spirito & Massimiliano Papi & Eugenio DelRe & Claudio Conti, 2023. "Extreme transport of light in spheroids of tumor cells," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Yu-Hui Chen & Xiangdong Zhang, 2023. "Realization of an inherent time crystal in a dissipative many-body system," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    18. Zehang Bao & Shibo Xu & Zixuan Song & Ke Wang & Liang Xiang & Zitian Zhu & Jiachen Chen & Feitong Jin & Xuhao Zhu & Yu Gao & Yaozu Wu & Chuanyu Zhang & Ning Wang & Yiren Zou & Ziqi Tan & Aosai Zhang &, 2024. "Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. S. Autti & P. J. Heikkinen & J. Nissinen & J. T. Mäkinen & G. E. Volovik & V. V. Zavyalov & V. B. Eltsov, 2022. "Nonlinear two-level dynamics of quantum time crystals," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Seadawy, Aly R. & Rizvi, Syed T.R. & Ahmed, Sarfaraz, 2022. "Multiple lump, generalized breathers, Akhmediev breather, manifold periodic and rogue wave solutions for generalized Fitzhugh-Nagumo equation: Applications in nuclear reactor theory," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33525-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.