IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38239-5.html
   My bibliography  Save this article

Reversible transitions between noradrenergic and mesenchymal tumor identities define cell plasticity in neuroblastoma

Author

Listed:
  • Cécile Thirant

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie)

  • Agathe Peltier

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie)

  • Simon Durand

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie)

  • Amira Kramdi

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie)

  • Caroline Louis-Brennetot

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie)

  • Cécile Pierre-Eugène

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie)

  • Margot Gautier

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie)

  • Ana Costa

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie)

  • Amandine Grelier

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie)

  • Sakina Zaïdi

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie)

  • Nadège Gruel

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Institut Curie, Department of Translational Research)

  • Irène Jimenez

    (Adolescents and Young Adults with Cancer, Institut Curie
    Institut Curie, Department of Translational Research
    Laboratoire Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire “Gilles Thomas”)

  • Eve Lapouble

    (Institut Curie, Unité de Génétique Somatique)

  • Gaëlle Pierron

    (Institut Curie, Unité de Génétique Somatique)

  • Déborah Sitbon

    (Institut Curie, Unité de Génétique Somatique)

  • Hervé J. Brisse

    (PSL Research University)

  • Arnaud Gauthier

    (Institut Curie, Department of Biopathology)

  • Paul Fréneaux

    (Institut Curie, Department of Biopathology)

  • Sandrine Grossetête

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie)

  • Laura G. Baudrin

    (Paris, France. Institut Curie, Single Cell Initiative)

  • Virginie Raynal

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Paris, France. Institut Curie, Single Cell Initiative)

  • Sylvain Baulande

    (Paris, France. Institut Curie, Single Cell Initiative)

  • Angela Bellini

    (Adolescents and Young Adults with Cancer, Institut Curie
    Institut Curie, Department of Translational Research
    Laboratoire Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire “Gilles Thomas”)

  • Jaydutt Bhalshankar

    (Adolescents and Young Adults with Cancer, Institut Curie
    Institut Curie, Department of Translational Research
    Laboratoire Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire “Gilles Thomas”)

  • Angel M. Carcaboso

    (Institut de Recerca Sant Joan de Déu)

  • Birgit Geoerger

    (Université Paris-Saclay)

  • Hermann Rohrer

    (Goethe University)

  • Didier Surdez

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie
    Faculty of Medicine, University of Zurich (UZH))

  • Valentina Boeva

    (Paris University
    Institute for Machine Learning
    Swiss Institute of Bioinformatics (SIB))

  • Gudrun Schleiermacher

    (Adolescents and Young Adults with Cancer, Institut Curie
    Institut Curie, Department of Translational Research
    Laboratoire Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire “Gilles Thomas”)

  • Olivier Delattre

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie
    Institut Curie, Unité de Génétique Somatique)

  • Isabelle Janoueix-Lerosey

    (PSL Research University, Diversity and Plasticity of Childhood Tumors Lab
    Adolescents and Young Adults with Cancer, Institut Curie)

Abstract

Noradrenergic and mesenchymal identities have been characterized in neuroblastoma cell lines according to their epigenetic landscapes and core regulatory circuitries. However, their relationship and relative contribution in patient tumors remain poorly defined. We now document spontaneous and reversible plasticity between the two identities, associated with epigenetic reprogramming, in several neuroblastoma models. Interestingly, xenografts with cells from each identity eventually harbor a noradrenergic phenotype suggesting that the microenvironment provides a powerful pressure towards this phenotype. Accordingly, such a noradrenergic cell identity is systematically observed in single-cell RNA-seq of 18 tumor biopsies and 15 PDX models. Yet, a subpopulation of these noradrenergic tumor cells presents with mesenchymal features that are shared with plasticity models, indicating that the plasticity described in these models has relevance in neuroblastoma patients. This work therefore emphasizes that intrinsic plasticity properties of neuroblastoma cells are dependent upon external cues of the environment to drive cell identity.

Suggested Citation

  • Cécile Thirant & Agathe Peltier & Simon Durand & Amira Kramdi & Caroline Louis-Brennetot & Cécile Pierre-Eugène & Margot Gautier & Ana Costa & Amandine Grelier & Sakina Zaïdi & Nadège Gruel & Irène Ji, 2023. "Reversible transitions between noradrenergic and mesenchymal tumor identities define cell plasticity in neuroblastoma," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38239-5
    DOI: 10.1038/s41467-023-38239-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38239-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38239-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tim Groningen & Nurdan Akogul & Ellen M. Westerhout & Alvin Chan & Nancy E. Hasselt & Danny A. Zwijnenburg & Marloes Broekmans & Peter Stroeken & Franciska Haneveld & Gerrit K. J. Hooijer & C. Dilara , 2019. "A NOTCH feed-forward loop drives reprogramming from adrenergic to mesenchymal state in neuroblastoma," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Yaël P. Mossé & Marci Laudenslager & Luca Longo & Kristina A. Cole & Andrew Wood & Edward F. Attiyeh & Michael J. Laquaglia & Rachel Sennett & Jill E. Lynch & Patrizia Perri & Geneviève Laureys & Fran, 2008. "Identification of ALK as a major familial neuroblastoma predisposition gene," Nature, Nature, vol. 455(7215), pages 930-935, October.
    3. Bieke Decaesteker & Geertrui Denecker & Christophe Van Neste & Emmy M. Dolman & Wouter Van Loocke & Moritz Gartlgruber & Carolina Nunes & Fanny De Vloed & Pauline Depuydt & Karen Verboom & Dries Romba, 2018. "TBX2 is a neuroblastoma core regulatory circuitry component enhancing MYCN/FOXM1 reactivation of DREAM targets," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    4. Isabelle Janoueix-Lerosey & Delphine Lequin & Laurence Brugières & Agnès Ribeiro & Loïc de Pontual & Valérie Combaret & Virginie Raynal & Alain Puisieux & Gudrun Schleiermacher & Gaëlle Pierron & Domi, 2008. "Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma," Nature, Nature, vol. 455(7215), pages 967-970, October.
    5. Lu Wang & Tze King Tan & Adam D. Durbin & Mark W. Zimmerman & Brian J. Abraham & Shi Hao Tan & Phuong Cao Thi Ngoc & Nina Weichert-Leahey & Koshi Akahane & Lee N. Lawton & Jo Lynne Rokita & John M. Ma, 2019. "ASCL1 is a MYCN- and LMO1-dependent member of the adrenergic neuroblastoma core regulatory circuitry," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    6. Yuyan Chen & Junko Takita & Young Lim Choi & Motohiro Kato & Miki Ohira & Masashi Sanada & Lili Wang & Manabu Soda & Akira Kikuchi & Takashi Igarashi & Akira Nakagawara & Yasuhide Hayashi & Hiroyuki M, 2008. "Oncogenic mutations of ALK kinase in neuroblastoma," Nature, Nature, vol. 455(7215), pages 971-974, October.
    7. O. C. Bedoya-Reina & W. Li & M. Arceo & M. Plescher & P. Bullova & H. Pui & M. Kaucka & P. Kharchenko & T. Martinsson & J. Holmberg & I. Adameyko & Q. Deng & C. Larsson & C. C. Juhlin & P. Kogner & S., 2021. "Single-nuclei transcriptomes from human adrenal gland reveal distinct cellular identities of low and high-risk neuroblastoma tumors," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    8. Rani E. George & Takaomi Sanda & Megan Hanna & Stefan Fröhling & William Luther II & Jianming Zhang & Yebin Ahn & Wenjun Zhou & Wendy B. London & Patrick McGrady & Liquan Xue & Sergey Zozulya & Vlad E, 2008. "Activating mutations in ALK provide a therapeutic target in neuroblastoma," Nature, Nature, vol. 455(7215), pages 975-978, October.
    9. Martin Peifer & Falk Hertwig & Frederik Roels & Daniel Dreidax & Moritz Gartlgruber & Roopika Menon & Andrea Krämer & Justin L. Roncaioli & Frederik Sand & Johannes M. Heuckmann & Fakhera Ikram & Rene, 2015. "Telomerase activation by genomic rearrangements in high-risk neuroblastoma," Nature, Nature, vol. 526(7575), pages 700-704, October.
    10. Ievgenia Pastushenko & Audrey Brisebarre & Alejandro Sifrim & Marco Fioramonti & Tatiana Revenco & Soufiane Boumahdi & Alexandra Van Keymeulen & Daniel Brown & Virginie Moers & Sophie Lemaire & Sarah , 2018. "Identification of the tumour transition states occurring during EMT," Nature, Nature, vol. 556(7702), pages 463-468, April.
    11. Dounia Ben Amar & Karine Thoinet & Benjamin Villalard & Olivier Imbaud & Clélia Costechareyre & Loraine Jarrosson & Florie Reynaud & Julia Novion Ducassou & Yohann Couté & Jean-François Brunet & Valér, 2022. "Environmental cues from neural crest derivatives act as metastatic triggers in an embryonic neuroblastoma model," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irfete S. Fetahu & Wolfgang Esser-Skala & Rohit Dnyansagar & Samuel Sindelar & Fikret Rifatbegovic & Andrea Bileck & Lukas Skos & Eva Bozsaky & Daria Lazic & Lisa Shaw & Marcus Tötzl & Dora Tarlungean, 2023. "Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esther R. Berko & Gabriela M. Witek & Smita Matkar & Zaritza O. Petrova & Megan A. Wu & Courtney M. Smith & Alex Daniels & Joshua Kalna & Annie Kennedy & Ivan Gostuski & Colleen Casey & Kateryna Kryts, 2023. "Circulating tumor DNA reveals mechanisms of lorlatinib resistance in patients with relapsed/refractory ALK-driven neuroblastoma," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Bieke Decaesteker & Amber Louwagie & Siebe Loontiens & Fanny De Vloed & Sarah-Lee Bekaert & Juliette Roels & Suzanne Vanhauwaert & Sara De Brouwer & Ellen Sanders & Alla Berezovskaya & Geertrui Deneck, 2023. "SOX11 regulates SWI/SNF complex components as member of the adrenergic neuroblastoma core regulatory circuitry," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Karin Schmelz & Joern Toedling & Matt Huska & Maja C. Cwikla & Louisa-Marie Kruetzfeldt & Jutta Proba & Peter F. Ambros & Inge M. Ambros & Sengül Boral & Marco Lodrini & Celine Y. Chen & Martin Burker, 2021. "Spatial and temporal intratumour heterogeneity has potential consequences for single biopsy-based neuroblastoma treatment decisions," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Tas ML & Van Noesel MM & Van den Boogaard ML & Schild GG & Hehir-Kwa JY & Molenaar JJ & Van Noesel MM & Van de Sande MAJ & Van de Sande MAJ & Bovée JVMG & Flucke UE & Flucke UE & Koster J, 2020. "ZFP42: A New Tumor Predisposition Gene? Presentation of a Patient with two Neoplasms in Childhood," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 27(5), pages 21166-21172, May.
    5. Irfete S. Fetahu & Wolfgang Esser-Skala & Rohit Dnyansagar & Samuel Sindelar & Fikret Rifatbegovic & Andrea Bileck & Lukas Skos & Eva Bozsaky & Daria Lazic & Lisa Shaw & Marcus Tötzl & Dora Tarlungean, 2023. "Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. C. Megan Young & Laurent Beziaud & Pierre Dessen & Angela Madurga Alonso & Albert Santamaria-Martínez & Joerg Huelsken, 2023. "Metabolic dependencies of metastasis-initiating cells in female breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Peter Bailey & Rachel A. Ridgway & Patrizia Cammareri & Mairi Treanor-Taylor & Ulla-Maja Bailey & Christina Schoenherr & Max Bone & Daniel Schreyer & Karin Purdie & Jason Thomson & William Rickaby & R, 2023. "Driver gene combinations dictate cutaneous squamous cell carcinoma disease continuum progression," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Yael Aylon & Noa Furth & Giuseppe Mallel & Gilgi Friedlander & Nishanth Belugali Nataraj & Meng Dong & Ori Hassin & Rawan Zoabi & Benjamin Cohen & Vanessa Drendel & Tomer Meir Salame & Saptaparna Mukh, 2022. "Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    9. Shigekazu Murakami & Shannon M. White & Alec T. McIntosh & Chan D. K. Nguyen & Chunling Yi, 2023. "Spontaneously evolved progenitor niches escape Yap oncogene addiction in advanced pancreatic ductal adenocarcinomas," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Benjamin A. Nacev & Francisco Sanchez-Vega & Shaleigh A. Smith & Cristina R. Antonescu & Evan Rosenbaum & Hongyu Shi & Cerise Tang & Nicholas D. Socci & Satshil Rana & Rodrigo Gularte-Mérida & Ahmet Z, 2022. "Clinical sequencing of soft tissue and bone sarcomas delineates diverse genomic landscapes and potential therapeutic targets," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Patrick Aouad & Yueyun Zhang & Fabio Martino & Céline Stibolt & Simak Ali & Giovanna Ambrosini & Sendurai A. Mani & Kelly Maggs & Hazel M. Quinn & George Sflomos & Cathrin Brisken, 2022. "Epithelial-mesenchymal plasticity determines estrogen receptor positive breast cancer dormancy and epithelial reconversion drives recurrence," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Nastaran Mohammadi Ghahhari & Magdalena K. Sznurkowska & Nicolas Hulo & Lilia Bernasconi & Nicola Aceto & Didier Picard, 2022. "Cooperative interaction between ERα and the EMT-inducer ZEB1 reprograms breast cancer cells for bone metastasis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Guidantonio Malagoli Tagliazucchi & Anna J. Wiecek & Eloise Withnell & Maria Secrier, 2023. "Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    14. Hsiao-Yun Chen & Yavuz T. Durmaz & Yixiang Li & Amin H. Sabet & Amir Vajdi & Thomas Denize & Emily Walton & Yasmin Nabil Laimon & John G. Doench & Navin R. Mahadevan & Julie-Aurore Losman & David A. B, 2022. "Regulation of neuroendocrine plasticity by the RNA-binding protein ZFP36L1," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    15. Steffen Fuchs & Clara Danßmann & Filippos Klironomos & Annika Winkler & Jörg Fallmann & Louisa-Marie Kruetzfeldt & Annabell Szymansky & Julian Naderi & Stephan H. Bernhart & Laura Grunewald & Konstant, 2023. "Defining the landscape of circular RNAs in neuroblastoma unveils a global suppressive function of MYCN," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    16. Mrinmoy Mukherjee & Herbert Levine, 2021. "Cluster size distribution of cells disseminating from a primary tumor," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    17. Polina Kameneva & Victoria I. Melnikova & Maria Eleni Kastriti & Anastasia Kurtova & Emil Kryukov & Aliia Murtazina & Louis Faure & Irina Poverennaya & Artem V. Artemov & Tatiana S. Kalinina & Nikita , 2022. "Serotonin limits generation of chromaffin cells during adrenal organ development," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    18. Francesc Muyas & Manuel José Gómez Rodriguez & Rita Cascão & Angela Afonso & Carolin M. Sauer & Claudia C. Faria & Isidro Cortés-Ciriano & Ignacio Flores, 2024. "The ALT pathway generates telomere fusions that can be detected in the blood of cancer patients," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38239-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.