IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37676-6.html
   My bibliography  Save this article

Subtle tuning of nanodefects actuates highly efficient electrocatalytic oxidation

Author

Listed:
  • Yifan Gao

    (Tsinghua University)

  • Shuai Liang

    (Beijing Forestry University)

  • Biming Liu

    (Tsinghua University)

  • Chengxu Jiang

    (Tsinghua University)

  • Chenyang Xu

    (Tsinghua University)

  • Xiaoyuan Zhang

    (Tsinghua University)

  • Peng Liang

    (Tsinghua University)

  • Menachem Elimelech

    (Yale University)

  • Xia Huang

    (Tsinghua University)

Abstract

Achieving controllable fine-tuning of defects in catalysts at the atomic level has become a zealous pursuit in catalysis-related fields. However, the generation of defects is quite random, and their flexible manipulation lacks theoretical basis. Herein, we present a facile and highly controllable thermal tuning strategy that enables fine control of nanodefects via subtle manipulation of atomic/lattice arrangements in electrocatalysts. Such thermal tuning endows common carbon materials with record high efficiency in electrocatalytic degradation of pollutants. Systematic characterization and calculations demonstrate that an optimal thermal tuning can bring about enhanced electrocatalytic efficiency by manipulating the N-centered annulation–volatilization reactions and C-based sp3/sp2 configuration alteration. Benefiting from this tuning strategy, the optimized electrocatalytic anodic membrane successfully achieves >99% pollutant (propranolol) degradation during a flow-through (~2.5 s for contact time), high-flux (424.5 L m−2 h−1), and long-term (>720 min) electrocatalytic filtration test at a very low energy consumption (0.029 ± 0.010 kWh m−3 order−1). Our findings highlight a controllable preparation approach of catalysts while also elucidating the molecular level mechanisms involved.

Suggested Citation

  • Yifan Gao & Shuai Liang & Biming Liu & Chengxu Jiang & Chenyang Xu & Xiaoyuan Zhang & Peng Liang & Menachem Elimelech & Xia Huang, 2023. "Subtle tuning of nanodefects actuates highly efficient electrocatalytic oxidation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37676-6
    DOI: 10.1038/s41467-023-37676-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37676-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37676-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yiou Wang & Xu Liu & Xiaoyu Han & Robert Godin & Jialu Chen & Wuzong Zhou & Chaoran Jiang & Jamie F. Thompson & K. Bayazit Mustafa & Stephen A. Shevlin & James R. Durrant & Zhengxiao Guo & Junwang Tan, 2020. "Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Yong Zhao & Ryuhei Nakamura & Kazuhide Kamiya & Shuji Nakanishi & Kazuhito Hashimoto, 2013. "Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqing Yan & Mengyang Xia & Hanxuan Liu & Bin Zhang & Chunran Chang & Lianzhou Wang & Guidong Yang, 2023. "An electron-hole rich dual-site nickel catalyst for efficient photocatalytic overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Cong Liu & Bingbao Mei & Zhaoping Shi & Zheng Jiang & Junjie Ge & Wei Xing & Ping Song & Weilin Xu, 2024. "Operando formation of highly efficient electrocatalysts induced by heteroatom leaching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Zeshu Zhang & Chengliang Mao & Débora Motta Meira & Paul N. Duchesne & Athanasios A. Tountas & Zhao Li & Chenyue Qiu & Sanli Tang & Rui Song & Xue Ding & Junchuan Sun & Jiangfan Yu & Jane Y. Howe & We, 2022. "New black indium oxide—tandem photothermal CO2-H2 methanol selective catalyst," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Yang Liu & Jianhui Sun & Houhou Huang & Linlu Bai & Xiaomeng Zhao & Binhong Qu & Lunqiao Xiong & Fuquan Bai & Junwang Tang & Liqiang Jing, 2023. "Improving CO2 photoconversion with ionic liquid and Co single atoms," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Pengcheng Ye & Keqing Fang & Haiyan Wang & Yahao Wang & Hao Huang & Chenbin Mo & Jiqiang Ning & Yong Hu, 2024. "Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Lei Luo & Lei Fu & Huifen Liu & Youxun Xu & Jialiang Xing & Chun-Ran Chang & Dong-Yuan Yang & Junwang Tang, 2022. "Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Lei Luo & Xiaoyu Han & Keran Wang & Youxun Xu & Lunqiao Xiong & Jiani Ma & Zhengxiao Guo & Junwang Tang, 2023. "Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Jijia Xie & Xiyi Li & Jian Guo & Lei Luo & Juan J. Delgado & Natalia Martsinovich & Junwang Tang, 2023. "Highly selective oxidation of benzene to phenol with air at room temperature promoted by water," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37676-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.