IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37286-2.html
   My bibliography  Save this article

Time-of-day defines NAD+ efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice

Author

Listed:
  • Quetzalcoatl Escalante-Covarrubias

    (Universidad Nacional Autónoma de México)

  • Lucía Mendoza-Viveros

    (Universidad Nacional Autónoma de México
    Instituto Nacional de Medicina Genómica)

  • Mirna González-Suárez

    (Universidad Nacional Autónoma de México)

  • Román Sitten-Olea

    (Universidad Nacional Autónoma de México)

  • Laura A. Velázquez-Villegas

    (Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán)

  • Fernando Becerril-Pérez

    (Universidad Nacional Autónoma de México)

  • Ignacio Pacheco-Bernal

    (Universidad Nacional Autónoma de México)

  • Erick Carreño-Vázquez

    (Instituto Nacional de Medicina Genómica)

  • Paola Mass-Sánchez

    (Universidad Nacional Autónoma de México)

  • Marcia Bustamante-Zepeda

    (Universidad Nacional Autónoma de México)

  • Ricardo Orozco-Solís

    (Instituto Nacional de Medicina Genómica
    Centro de Investigación y de Estudios Avanzados)

  • Lorena Aguilar-Arnal

    (Universidad Nacional Autónoma de México)

Abstract

The circadian clock is an endogenous time-tracking system that anticipates daily environmental changes. Misalignment of the clock can cause obesity, which is accompanied by reduced levels of the clock-controlled, rhythmic metabolite NAD+. Increasing NAD+ is becoming a therapy for metabolic dysfunction; however, the impact of daily NAD+ fluctuations remains unknown. Here, we demonstrate that time-of-day determines the efficacy of NAD+ treatment for diet-induced metabolic disease in mice. Increasing NAD+ prior to the active phase in obese male mice ameliorated metabolic markers including body weight, glucose and insulin tolerance, hepatic inflammation and nutrient sensing pathways. However, raising NAD+ immediately before the rest phase selectively compromised these responses. Remarkably, timed NAD+ adjusted circadian oscillations of the liver clock until completely inverting its oscillatory phase when increased just before the rest period, resulting in misaligned molecular and behavioral rhythms in male and female mice. Our findings unveil the time-of-day dependence of NAD+-based therapies and support a chronobiology-based approach.

Suggested Citation

  • Quetzalcoatl Escalante-Covarrubias & Lucía Mendoza-Viveros & Mirna González-Suárez & Román Sitten-Olea & Laura A. Velázquez-Villegas & Fernando Becerril-Pérez & Ignacio Pacheco-Bernal & Erick Carreño-, 2023. "Time-of-day defines NAD+ efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37286-2
    DOI: 10.1038/s41467-023-37286-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37286-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37286-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frédéric Picard & Martin Kurtev & Namjin Chung & Acharawan Topark-Ngarm & Thanaset Senawong & Rita Machado de Oliveira & Mark Leid & Michael W. McBurney & Leonard Guarente, 2004. "Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ," Nature, Nature, vol. 429(6993), pages 771-776, June.
    2. Frédéric Picard & Martin Kurtev & Namjin Chung & Acharawan Topark-Ngarm & Thanaset Senawong & Rita Machado de Oliveira & Mark Leid & Michael W. McBurney & Leonard Guarente, 2004. "Correction: Corrigendum: Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ," Nature, Nature, vol. 430(7002), pages 921-921, August.
    3. Christian Wolfrum & Esra Asilmaz & Edlira Luca & Jeffrey M. Friedman & Markus Stoffel, 2004. "Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes," Nature, Nature, vol. 432(7020), pages 1027-1032, December.
    4. Stefan G. Tullius & Hector Rodriguez Cetina Biefer & Suyan Li & Alexander J. Trachtenberg & Karoline Edtinger & Markus Quante & Felix Krenzien & Hirofumi Uehara & Xiaoyong Yang & Haydn T. Kissick & Wi, 2014. "NAD+ protects against EAE by regulating CD4+ T-cell differentiation," Nature Communications, Nature, vol. 5(1), pages 1-17, December.
    5. Meng Qu & Han Qu & Zhenyu Jia & Steve A. Kay, 2021. "HNF4A defines tissue-specific circadian rhythms by beaconing BMAL1::CLOCK chromatin binding and shaping the rhythmic chromatin landscape," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Lynne Peeples, 2018. "Medicine’s secret ingredient — it’s in the timing," Nature, Nature, vol. 556(7701), pages 290-292, April.
    7. Timothy S. Luongo & Jared M. Eller & Mu-Jie Lu & Marc Niere & Fabio Raith & Caroline Perry & Marc R. Bornstein & Paul Oliphint & Lin Wang & Melanie R. McReynolds & Marie E. Migaud & Joshua D. Rabinowi, 2020. "SLC25A51 is a mammalian mitochondrial NAD+ transporter," Nature, Nature, vol. 588(7836), pages 174-179, December.
    8. Piero Dalle Pezze & Stefanie Ruf & Annika G. Sonntag & Miriam Langelaar-Makkinje & Philip Hall & Alexander M. Heberle & Patricia Razquin Navas & Karen van Eunen & Regine C. Tölle & Jennifer J. Schwarz, 2016. "A systems study reveals concurrent activation of AMPK and mTOR by amino acids," Nature Communications, Nature, vol. 7(1), pages 1-19, December.
    9. Elena Katsyuba & Adrienne Mottis & Marika Zietak & Francesca Franco & Vera Velpen & Karim Gariani & Dongryeol Ryu & Lucia Cialabrini & Olli Matilainen & Paride Liscio & Nicola Giacchè & Nadine Stokar-, 2018. "De novo NAD+ synthesis enhances mitochondrial function and improves health," Nature, Nature, vol. 563(7731), pages 354-359, November.
    10. Audrey Sambeat & Joanna Ratajczak & Magali Joffraud & José L. Sanchez-Garcia & Maria P. Giner & Armand Valsesia & Judith Giroud-Gerbetant & Miriam Valera-Alberni & Angelique Cercillieux & Marie Boutan, 2019. "Endogenous nicotinamide riboside metabolism protects against diet-induced liver damage," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    11. Elmar Wolf & Anneli Gebhardt & Daisuke Kawauchi & Susanne Walz & Björn von Eyss & Nicole Wagner & Christoph Renninger & Georg Krohne & Esther Asan & Martine F. Roussel & Martin Eilers, 2013. "Miz1 is required to maintain autophagic flux," Nature Communications, Nature, vol. 4(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefania D’Angelo & Elena Mele & Federico Di Filippo & Andrea Viggiano & Rosaria Meccariello, 2021. "Sirt1 Activity in the Brain: Simultaneous Effects on Energy Homeostasis and Reproduction," IJERPH, MDPI, vol. 18(3), pages 1-17, January.
    2. Jae Woo Park & Eun Roh & Gil Myoung Kang & So Young Gil & Hyun Kyong Kim & Chan Hee Lee & Won Hee Jang & Se Eun Park & Sang Yun Moon & Seong Jun Kim & So Yeon Jeong & Chae Beom Park & Hyo Sun Lim & Yu, 2023. "Circulating blood eNAMPT drives the circadian rhythms in locomotor activity and energy expenditure," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Di-Yang Sun & Wen-Bin Wu & Jian-Jin Wu & Yu Shi & Jia-Jun Xu & Shen-Xi Ouyang & Chen Chi & Yi Shi & Qing-Xin Ji & Jin-Hao Miao & Jiang-Tao Fu & Jie Tong & Ping-Ping Zhang & Jia-Bao Zhang & Zhi-Yong Li, 2024. "Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Hope Dang & Raul Castro-Portuguez & Luis Espejo & Grant Backer & Samuel Freitas & Erica Spence & Jeremy Meyers & Karissa Shuck & Emily A. Gardea & Leah M. Chang & Jonah Balsa & Niall Thorns & Caroline, 2023. "On the benefits of the tryptophan metabolite 3-hydroxyanthranilic acid in Caenorhabditis elegans and mouse aging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Nan Wu & Yi-Cheng Ma & Xin-Qian Gong & Pei-Ji Zhao & Yong-Jian Jia & Qiu Zhao & Jia-Hong Duan & Cheng-Gang Zou, 2023. "The metabolite alpha-ketobutyrate extends lifespan by promoting peroxisomal function in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Guanlan Hu & Catriona Ling & Lijun Chi & Mehakpreet K. Thind & Samuel Furse & Albert Koulman & Jonathan R. Swann & Dorothy Lee & Marjolein M. Calon & Celine Bourdon & Christian J. Versloot & Barbara M, 2022. "The role of the tryptophan-NAD + pathway in a mouse model of severe malnutrition induced liver dysfunction," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Xiao-Ru Ma & Xudong Zhu & Yujie Xiao & Hui-Min Gu & Shuang-Shuang Zheng & Liang Li & Fan Wang & Zhao-Jun Dong & Di-Xian Wang & Yang Wu & Chenyu Yang & Wenhong Jiang & Ke Yao & Yue Yin & Yang Zhang & C, 2022. "Restoring nuclear entry of Sirtuin 2 in oligodendrocyte progenitor cells promotes remyelination during ageing," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Gloria Ursino & Giorgio Ramadori & Anna Höfler & Soline Odouard & Pryscila D. S. Teixeira & Florian Visentin & Christelle Veyrat-Durebex & Giulia Lucibello & Raquel Firnkes & Serena Ricci & Claudia R., 2022. "Hepatic non-parenchymal S100A9-TLR4-mTORC1 axis normalizes diabetic ketogenesis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Markus M. Rinschen & Oleg Palygin & Ashraf El-Meanawy & Xavier Domingo-Almenara & Amelia Palermo & Lashodya V. Dissanayake & Daria Golosova & Michael A. Schafroth & Carlos Guijas & Fatih Demir & Johan, 2022. "Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Bin Li, 2019. "Sirt1 Inhibits Adipose Tissue Inflammation by Foxos/ mTOR/S6K1 Signal Pathway in Mice," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 19(5), pages 14646-14655, July.
    11. Kevin G Culligan, 2017. "Nampt: Intracellular and Extracellular Influence on Diabetes and Obesity," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 4(3), pages 62-66, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37286-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.