IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36596-9.html
   My bibliography  Save this article

Tetraspanin 4 stabilizes membrane swellings and facilitates their maturation into migrasomes

Author

Listed:
  • Raviv Dharan

    (Tel Aviv University
    Tel Aviv University)

  • Yuwei Huang

    (Xi’an Jiaotong University)

  • Sudheer Kumar Cheppali

    (Tel Aviv University
    Tel Aviv University)

  • Shahar Goren

    (Tel Aviv University
    Tel Aviv University
    Tel Aviv University)

  • Petr Shendrik

    (Tel Aviv University)

  • Weisi Wang

    (Xi’an Jiaotong University)

  • Jiamei Qiao

    (Xi’an Jiaotong University)

  • Michael M. Kozlov

    (Tel Aviv University
    Tel Aviv University)

  • Li Yu

    (Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University)

  • Raya Sorkin

    (Tel Aviv University
    Tel Aviv University)

Abstract

Migrasomes are newly discovered cell organelles forming by local swelling of retraction fibers. The migrasome formation critically depends on tetraspanin proteins present in the retraction fiber membranes and is modulated by the membrane tension and bending rigidity. It remained unknown how and in which time sequence these factors are involved in migrasome nucleation, growth, and stabilization, and what are the possible intermediate stages of migrasome biogenesis. Here using live cell imaging and a biomimetic system for migrasomes and retraction fibers, we reveal that migrasome formation is a two-stage process. At the first stage, which in biomimetic system is mediated by membrane tension, local swellings largely devoid of tetraspanin 4 form on the retraction fibers. At the second stage, tetraspanin 4 molecules migrate toward and onto these swellings, which grow up to several microns in size and transform into migrasomes. This tetraspanin 4 recruitment to the swellings is essential for migrasome growth and stabilization. Based on these findings we propose that the major role of tetraspanin proteins is in stabilizing the migrasome structure, while the migrasome nucleation and initial growth stages can be driven by membrane mechanical stresses.

Suggested Citation

  • Raviv Dharan & Yuwei Huang & Sudheer Kumar Cheppali & Shahar Goren & Petr Shendrik & Weisi Wang & Jiamei Qiao & Michael M. Kozlov & Li Yu & Raya Sorkin, 2023. "Tetraspanin 4 stabilizes membrane swellings and facilitates their maturation into migrasomes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36596-9
    DOI: 10.1038/s41467-023-36596-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36596-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36596-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rie Umeda & Yuhkoh Satouh & Mizuki Takemoto & Yoshiko Nakada-Nakura & Kehong Liu & Takeshi Yokoyama & Mikako Shirouzu & So Iwata & Norimichi Nomura & Ken Sato & Masahito Ikawa & Tomohiro Nishizawa & O, 2020. "Structural insights into tetraspanin CD9 function," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Harvey T. McMahon & Jennifer L. Gallop, 2005. "Membrane curvature and mechanisms of dynamic cell membrane remodelling," Nature, Nature, vol. 438(7068), pages 590-596, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wonchul Shin & Ben Zucker & Nidhi Kundu & Sung Hoon Lee & Bo Shi & Chung Yu Chan & Xiaoli Guo & Jonathan T. Harrison & Jaymie Moore Turechek & Jenny E. Hinshaw & Michael M. Kozlov & Ling-Gang Wu, 2022. "Molecular mechanics underlying flat-to-round membrane budding in live secretory cells," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Fabian Höglsperger & Bart E. Vos & Arne D. Hofemeier & Maximilian D. Seyfried & Bastian Stövesand & Azadeh Alavizargar & Leon Topp & Andreas Heuer & Timo Betz & Bart Jan Ravoo, 2023. "Rapid and reversible optical switching of cell membrane area by an amphiphilic azobenzene," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Ewa Sitarska & Silvia Dias Almeida & Marianne Sandvold Beckwith & Julian Stopp & Jakub Czuchnowski & Marc Siggel & Rita Roessner & Aline Tschanz & Christer Ejsing & Yannick Schwab & Jan Kosinski & Mic, 2023. "Sensing their plasma membrane curvature allows migrating cells to circumvent obstacles," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Fanlong Wang & Xianbi Li & Yujie Li & Jing Han & Yang Chen & Jianyan Zeng & Mei Su & Jingxin Zhuo & Hui Ren & Haoru Liu & Lei Hou & Yanhua Fan & Xingying Yan & Shuiqing Song & Juan Zhao & Dan Jin & Mi, 2021. "Arabidopsis P4 ATPase-mediated cell detoxification confers resistance to Fusarium graminearum and Verticillium dahliae," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Rower, David A. & Atzberger, Paul J., 2023. "Coarse-grained methods for heterogeneous vesicles with phase-separated domains: Elastic mechanics of shape fluctuations, plate compression, and channel insertion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 342-361.
    6. J.I. Pavlič & T. Mareš & J. Bešter & V. Janša & M. Daniel & A. Iglič, 2009. "Encapsulation of small spherical liposome into larger flaccid liposome induced by human plasma proteins," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 12(2), pages 147-150.
    7. R A Barrio & Tomas Alarcon & A Hernandez-Machado, 2020. "The dynamics of shapes of vesicle membranes with time dependent spontaneous curvature," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-11, January.
    8. Alan K. Okada & Kazuki Teranishi & Mark R. Ambroso & Jose Mario Isas & Elena Vazquez-Sarandeses & Joo-Yeun Lee & Arthur Alves Melo & Priyatama Pandey & Daniel Merken & Leona Berndt & Michael Lammers &, 2021. "Lysine acetylation regulates the interaction between proteins and membranes," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Wenyi Zheng & Julia Rädler & Helena Sork & Zheyu Niu & Samantha Roudi & Jeremy P. Bost & André Görgens & Ying Zhao & Doste R. Mamand & Xiuming Liang & Oscar P. B. Wiklander & Taavi Lehto & Dhanu Gupta, 2023. "Identification of scaffold proteins for improved endogenous engineering of extracellular vesicles," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Jinyi Zhu & Qian Qiao & Yujing Sun & Yuanpeng Xu & Haidong Shu & Zhichao Zhang & Fan Liu & Haonan Wang & Wenwu Ye & Suomeng Dong & Yan Wang & Zhenchuan Ma & Yuanchao Wang, 2023. "Divergent sequences of tetraspanins enable plants to specifically recognize microbe-derived extracellular vesicles," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36596-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.