IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35984-5.html
   My bibliography  Save this article

Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF

Author

Listed:
  • Yunjia Jiang,

    (College of Chemistry and Life Sciences, Zhejiang Normal University)

  • Yongqi Hu,

    (College of Chemistry and Life Sciences, Zhejiang Normal University)

  • Binquan Luan,

    (IBM Thomas J. Watson Research, Yorktown Heights)

  • Lingyao Wang,

    (College of Chemistry and Life Sciences, Zhejiang Normal University)

  • Rajamani Krishna,

    (University of Amsterdam)

  • Haofei Ni,

    (College of Chemistry and Life Sciences, Zhejiang Normal University)

  • Xin Hu

    (College of Chemistry and Life Sciences, Zhejiang Normal University)

  • Yuanbin Zhang

    (College of Chemistry and Life Sciences, Zhejiang Normal University)

Abstract

Ethylene (C2H4) purification from multi-component mixtures by physical adsorption is a great challenge in the chemical industry. Herein, we report a GeF62- anion embedded MOF (ZNU-6) with customized pore structure and pore chemistry for benchmark one-step C2H4 recovery from C2H2 and CO2. ZNU-6 exhibits significantly high C2H2 (1.53 mmol/g) and CO2 (1.46 mmol/g) capacity at 0.01 bar. Record high C2H4 productivity is achieved from C2H2/CO2/C2H4 mixtures in a single adsorption process under various conditions. The separation performance is retained over multiple cycles and under humid conditions. The potential gas binding sites are investigated by density functional theory (DFT) calculations, which suggest that C2H2 and CO2 are preferably adsorbed in the interlaced narrow channel with high aff0inity. In-situ single crystal structures with the dose of C2H2, CO2 or C2H4 further reveal the realistic host-guest interactions. Notably, rare C2H2 clusters are formed in the narrow channel while two distinct CO2 adsorption locations are observed in the narrow channel and the large cavity with a ratio of 1:2, which accurately account for the distinct adsorption heat curves.

Suggested Citation

  • Yunjia Jiang, & Yongqi Hu, & Binquan Luan, & Lingyao Wang, & Rajamani Krishna, & Haofei Ni, & Xin Hu & Yuanbin Zhang, 2023. "Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35984-5
    DOI: 10.1038/s41467-023-35984-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35984-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35984-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David S. Sholl & Ryan P. Lively, 2016. "Seven chemical separations to change the world," Nature, Nature, vol. 532(7600), pages 435-437, April.
    2. Jian-Wei Cao & Soumya Mukherjee & Tony Pham & Yu Wang & Teng Wang & Tao Zhang & Xue Jiang & Hui-Juan Tang & Katherine A. Forrest & Brian Space & Michael J. Zaworotko & Kai-Jie Chen, 2021. "One-step ethylene production from a four-component gas mixture by a single physisorbent," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Peixin Zhang & Lifeng Yang & Xing Liu & Jun Wang & Xian Suo & Liyuan Chen & Xili Cui & Huabin Xing, 2022. "Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Qingju Wang & Jianbo Hu & Lifeng Yang & Zhaoqiang Zhang & Tian Ke & Xili Cui & Huabin Xing, 2022. "One-step removal of alkynes and propadiene from cracking gases using a multi-functional molecular separator," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Heng Zeng & Mo Xie & Ting Wang & Rong-Jia Wei & Xiao-Jing Xie & Yifang Zhao & Weigang Lu & Dan Li, 2021. "Orthogonal-array dynamic molecular sieving of propylene/propane mixtures," Nature, Nature, vol. 595(7868), pages 542-548, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peixin Zhang & Lifeng Yang & Xing Liu & Jun Wang & Xian Suo & Liyuan Chen & Xili Cui & Huabin Xing, 2022. "Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Enyu Wu & Xiao-Wen Gu & Di Liu & Xu Zhang & Hui Wu & Wei Zhou & Guodong Qian & Bin Li, 2023. "Incorporation of multiple supramolecular binding sites into a robust MOF for benchmark one-step ethylene purification," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Shengjun Du & Jiawu Huang & Matthew R. Ryder & Luke L. Daemen & Cuiting Yang & Hongjun Zhang & Panchao Yin & Yuyan Lai & Jing Xiao & Sheng Dai & Banglin Chen, 2023. "Probing sub-5 Ångstrom micropores in carbon for precise light olefin/paraffin separation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Yong Peng & Hanting Xiong & Peixin Zhang & Zhiwei Zhao & Xing Liu & Shihui Tang & Yuan Liu & Zhenliang Zhu & Weizhen Zhou & Zhenning Deng & Junhui Liu & Yao Zhong & Zeliang Wu & Jingwen Chen & Zhenyu , 2024. "Interaction-selective molecular sieving adsorbent for direct separation of ethylene from senary C2-C4 olefin/paraffin mixture," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Qingju Wang & Lifeng Yang & Tian Ke & Jianbo Hu & Xian Suo & Xili Cui & Huabin Xing, 2024. "Selective sorting of hexane isomers by anion-functionalized metal-organic frameworks with optimal energy regulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Zeyu Liu & Youshi Lan & Jianfeng Jia & Yiyun Geng & Xiaobin Dai & Litang Yan & Tongyang Hu & Jing Chen & Krzysztof Matyjaszewski & Gang Ye, 2022. "Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Mingke Yang & Huishan Wang & Julian Y. Zuo & Chun Deng & Bei Liu & Liya Chai & Kun Li & Han Xiao & Peng Xiao & Xiaohui Wang & Wan Chen & Xiaowan Peng & Yu Han & Zixuan Huang & Baocan Dong & Changyu Su, 2022. "Efficient separation of butane isomers via ZIF-8 slurry on laboratory- and pilot-scale," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Jingqi Wang & Jiapeng Liu & Hongshuai Wang & Musen Zhou & Guolin Ke & Linfeng Zhang & Jianzhong Wu & Zhifeng Gao & Diannan Lu, 2024. "A comprehensive transformer-based approach for high-accuracy gas adsorption predictions in metal-organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Bingbing Yuan & Yuhang Zhang & Pengfei Qi & Dongxiao Yang & Ping Hu & Siheng Zhao & Kaili Zhang & Xiaozhuan Zhang & Meng You & Jiabao Cui & Juhui Jiang & Xiangdong Lou & Q. Jason Niu, 2024. "Self-assembled dendrimer polyamide nanofilms with enhanced effective pore area for ion separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Xueru Yan & Tianqi Song & Min Li & Zhi Wang & Xinlei Liu, 2024. "Sub-micro porous thin polymer membranes for discriminating H2 and CO2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Letitia Petrescu & Codruta-Maria Cormos, 2022. "Classical and Process Intensification Methods for Acetic Acid Concentration: Technical and Environmental Assessment," Energies, MDPI, vol. 15(21), pages 1-23, October.
    12. Yangyang Xu & Tu Sun & Tengwu Zeng & Xiangyu Zhang & Xuan Yao & Shan Liu & Zhaolin Shi & Wen Wen & Yingbo Zhao & Shan Jiang & Yanhang Ma & Yue-Biao Zhang, 2023. "Symmetry-breaking dynamics in a tautomeric 3D covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Mariem Ferchichi & Laszlo Hegely & Peter Lang, 2021. "Decrease of energy demand of semi-batch distillation policies," Energy & Environment, , vol. 32(8), pages 1479-1503, December.
    14. Muhammad Abdul Qyyum & Yus Donald Chaniago & Wahid Ali & Hammad Saulat & Moonyong Lee, 2020. "Membrane-Assisted Removal of Hydrogen and Nitrogen from Synthetic Natural Gas for Energy-Efficient Liquefaction," Energies, MDPI, vol. 13(19), pages 1-18, September.
    15. Yongyang Song & Jiajia Zhou & Zhongpeng Zhu & Xiaoxia Li & Yue Zhang & Xinyi Shen & Padraic O’Reilly & Xiuling Li & Xinmiao Liang & Lei Jiang & Shutao Wang, 2023. "Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Zhenggong Wang & Xiaofan Luo & Zejun Song & Kuan Lu & Shouwen Zhu & Yanshao Yang & Yatao Zhang & Wangxi Fang & Jian Jin, 2022. "Microporous polymer adsorptive membranes with high processing capacity for molecular separation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Fu, Pengbo & Yu, Hao & Li, Qiqi & Cheng, Tingting & Zhang, Fangzheng & Yang, Tao & Huang, Yuan & Li, Jianping & Fang, Xiangchen & Xiu, Guangli & Wang, Hualin, 2022. "Cyclone rotational drying of lignite based on particle high-speed self-rotation: Lower carrier gas temperature and shorter residence time," Energy, Elsevier, vol. 244(PB).
    18. Bruno Franco & Lieven Clarisse & Martin Van Damme & Juliette Hadji-Lazaro & Cathy Clerbaux & Pierre-François Coheur, 2022. "Ethylene industrial emitters seen from space," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    20. Jinqiu Yuan & Xinda You & Niaz Ali Khan & Runlai Li & Runnan Zhang & Jianliang Shen & Li Cao & Mengying Long & Yanan Liu & Zijian Xu & Hong Wu & Zhongyi Jiang, 2022. "Photo-tailored heterocrystalline covalent organic framework membranes for organics separation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35984-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.