IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34098-8.html
   My bibliography  Save this article

Ethylene industrial emitters seen from space

Author

Listed:
  • Bruno Franco

    (Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES))

  • Lieven Clarisse

    (Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES))

  • Martin Van Damme

    (Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES)
    Royal Belgian Institute for Space Aeronomy (BIRA-IASB))

  • Juliette Hadji-Lazaro

    (LATMOS/ IPSL, Sorbonne Université, UVSQ, CNRS)

  • Cathy Clerbaux

    (Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES)
    LATMOS/ IPSL, Sorbonne Université, UVSQ, CNRS)

  • Pierre-François Coheur

    (Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES))

Abstract

Volatile organic compounds are emitted abundantly from a variety of natural and anthropogenic sources. However, in excess, they can severely degrade air quality. Their fluxes are currently poorly represented in inventories due to a lack of constraints from global measurements. Here, we track from space over 300 worldwide hotspots of ethylene, the most abundant industrially produced organic compound. We identify specific emitters associated with petrochemical clusters, steel plants, coal-related industries, and megacities. Satellite-derived fluxes reveal that the ethylene emissions of the industrial sources are underestimated or missing in the state-of-the-art Emission Database for Global Atmospheric Research (EDGAR) inventory. This work exposes global emission point-sources of a short-lived carbonated gas, complementing the ongoing large-scale efforts on the monitoring of inorganic pollutants.

Suggested Citation

  • Bruno Franco & Lieven Clarisse & Martin Van Damme & Juliette Hadji-Lazaro & Cathy Clerbaux & Pierre-François Coheur, 2022. "Ethylene industrial emitters seen from space," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34098-8
    DOI: 10.1038/s41467-022-34098-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34098-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34098-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hu, Jianlin & Huang, Lin & Chen, Mindong & He, Gang & Zhang, Hongliang, 2017. "Impacts of power generation on air quality in China—Part II: Future scenarios," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 115-127.
    2. David S. Sholl & Ryan P. Lively, 2016. "Seven chemical separations to change the world," Nature, Nature, vol. 532(7600), pages 435-437, April.
    3. Martin Van Damme & Lieven Clarisse & Simon Whitburn & Juliette Hadji-Lazaro & Daniel Hurtmans & Cathy Clerbaux & Pierre-François Coheur, 2018. "Industrial and agricultural ammonia point sources exposed," Nature, Nature, vol. 564(7734), pages 99-103, December.
    4. Huang, Lin & Hu, Jianlin & Chen, Mindong & Zhang, Hongliang, 2017. "Impacts of power generation on air quality in China—part I: An overview," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 103-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Gang & Zhang, Hongliang & Xu, Yuan & Lu, Xi, 2017. "China’s clean power transition: Current status and future prospect," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 3-10.
    2. Mark D. Rodgers & David W. Coit & Frank A. Felder & Annmarie G. Carlton, 2019. "A Metamodeling Framework for Quantifying Health Damages of Power Grid Expansion Plans," IJERPH, MDPI, vol. 16(10), pages 1-21, May.
    3. Rong Ma & Ke Li & Yixin Guo & Bo Zhang & Xueli Zhao & Soeren Linder & ChengHe Guan & Guoqian Chen & Yujie Gan & Jing Meng, 2021. "Mitigation potential of global ammonia emissions and related health impacts in the trade network," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Peixin Zhang & Lifeng Yang & Xing Liu & Jun Wang & Xian Suo & Liyuan Chen & Xili Cui & Huabin Xing, 2022. "Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Mariem Ferchichi & Laszlo Hegely & Peter Lang, 2021. "Decrease of energy demand of semi-batch distillation policies," Energy & Environment, , vol. 32(8), pages 1479-1503, December.
    6. Muhammad Abdul Qyyum & Yus Donald Chaniago & Wahid Ali & Hammad Saulat & Moonyong Lee, 2020. "Membrane-Assisted Removal of Hydrogen and Nitrogen from Synthetic Natural Gas for Energy-Efficient Liquefaction," Energies, MDPI, vol. 13(19), pages 1-18, September.
    7. Zhenggong Wang & Xiaofan Luo & Zejun Song & Kuan Lu & Shouwen Zhu & Yanshao Yang & Yatao Zhang & Wangxi Fang & Jian Jin, 2022. "Microporous polymer adsorptive membranes with high processing capacity for molecular separation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Jinqiu Yuan & Xinda You & Niaz Ali Khan & Runlai Li & Runnan Zhang & Jianliang Shen & Li Cao & Mengying Long & Yanan Liu & Zijian Xu & Hong Wu & Zhongyi Jiang, 2022. "Photo-tailored heterocrystalline covalent organic framework membranes for organics separation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Qian Zhang & Bo Gao & Ling Zhang & Xiaopeng Liu & Jixiang Cui & Yijun Cao & Hongbo Zeng & Qun Xu & Xinwei Cui & Lei Jiang, 2023. "Anomalous water molecular gating from atomic-scale graphene capillaries for precise and ultrafast molecular sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Qingju Wang & Lifeng Yang & Tian Ke & Jianbo Hu & Xian Suo & Xili Cui & Huabin Xing, 2024. "Selective sorting of hexane isomers by anion-functionalized metal-organic frameworks with optimal energy regulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Yunjia Jiang, & Yongqi Hu, & Binquan Luan, & Lingyao Wang, & Rajamani Krishna, & Haofei Ni, & Xin Hu & Yuanbin Zhang, 2023. "Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Yisa Zhou & Ying Wu & Haoyu Wu & Jian Xue & Li Ding & Rui Wang & Haihui Wang, 2022. "Fast hydrogen purification through graphitic carbon nitride nanosheet membranes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Young Joo Lee & Lihua Chen & Janhavi Nistane & Hye Youn Jang & Dylan J. Weber & Joseph K. Scott & Neel D. Rangnekar & Bennett D. Marshall & Wenjun Li & J. R. Johnson & Nicholas C. Bruno & M. G. Finn &, 2023. "Data-driven predictions of complex organic mixture permeation in polymer membranes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Kiss, Anton A. & Smith, Robin, 2020. "Rethinking energy use in distillation processes for a more sustainable chemical industry," Energy, Elsevier, vol. 203(C).
    16. Jyoti Shanker Pandey & Nicolas von Solms, 2022. "Metal–Organic Frameworks and Gas Hydrate Synergy: A Pandora’s Box of Unanswered Questions and Revelations," Energies, MDPI, vol. 16(1), pages 1-30, December.
    17. Rezakazemi, Mashallah & Arabi Shamsabadi, Ahmad & Lin, Haiqing & Luis, Patricia & Ramakrishna, Seeram & Aminabhavi, Tejraj M., 2021. "Sustainable MXenes-based membranes for highly energy-efficient separations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Yong Peng & Hanting Xiong & Peixin Zhang & Zhiwei Zhao & Xing Liu & Shihui Tang & Yuan Liu & Zhenliang Zhu & Weizhen Zhou & Zhenning Deng & Junhui Liu & Yao Zhong & Zeliang Wu & Jingwen Chen & Zhenyu , 2024. "Interaction-selective molecular sieving adsorbent for direct separation of ethylene from senary C2-C4 olefin/paraffin mixture," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Areej Javed & Afaq Hassan & Muhammad Babar & Umair Azhar & Asim Riaz & Rana Mujahid & Tausif Ahmad & Muhammad Mubashir & Hooi Ren Lim & Pau Loke Show & Kuan Shiong Khoo, 2022. "A Comparison of the Exergy Efficiencies of Various Heat-Integrated Distillation Columns," Energies, MDPI, vol. 15(18), pages 1-15, September.
    20. Zeyu Liu & Youshi Lan & Jianfeng Jia & Yiyun Geng & Xiaobin Dai & Litang Yan & Tongyang Hu & Jing Chen & Krzysztof Matyjaszewski & Gang Ye, 2022. "Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34098-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.