IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33135-w.html
   My bibliography  Save this article

Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation

Author

Listed:
  • Xin Gao

    (Peking University
    Beijing Graphene Institute
    Peking University)

  • Liming Zheng

    (Peking University
    Beijing Graphene Institute)

  • Fang Luo

    (National University of Defense Technology)

  • Jun Qian

    (Peking University
    Beijing Graphene Institute)

  • Jingyue Wang

    (Peking University)

  • Mingzhi Yan

    (Beijing Graphene Institute
    Changchun University of Technology)

  • Wendong Wang

    (University of Manchester)

  • Qinci Wu

    (Peking University
    Beijing Graphene Institute)

  • Junchuan Tang

    (Peking University)

  • Yisen Cao

    (Beijing Graphene Institute)

  • Congwei Tan

    (Peking University)

  • Jilin Tang

    (Peking University
    Beijing Graphene Institute
    Peking University)

  • Mengjian Zhu

    (National University of Defense Technology)

  • Yani Wang

    (Peking University
    Beijing Graphene Institute)

  • Yanglizhi Li

    (Peking University
    Beijing Graphene Institute
    Peking University)

  • Luzhao Sun

    (Beijing Graphene Institute)

  • Guanghui Gao

    (Beijing Graphene Institute
    Changchun University of Technology)

  • Jianbo Yin

    (Beijing Graphene Institute)

  • Li Lin

    (Beijing Graphene Institute
    Peking University)

  • Zhongfan Liu

    (Peking University
    Beijing Graphene Institute
    Peking University)

  • Shiqiao Qin

    (National University of Defense Technology)

  • Hailin Peng

    (Peking University
    Beijing Graphene Institute
    Peking University)

Abstract

The integration of large-scale two-dimensional (2D) materials onto semiconductor wafers is highly desirable for advanced electronic devices, but challenges such as transfer-related crack, contamination, wrinkle and doping remain. Here, we developed a generic method by gradient surface energy modulation, leading to a reliable adhesion and release of graphene onto target wafers. The as-obtained wafer-scale graphene exhibited a damage-free, clean, and ultra-flat surface with negligible doping, resulting in uniform sheet resistance with only ~6% deviation. The as-transferred graphene on SiO2/Si exhibited high carrier mobility reaching up ~10,000 cm2 V−1 s−1, with quantum Hall effect (QHE) observed at room temperature. Fractional quantum Hall effect (FQHE) appeared at 1.7 K after encapsulation by h-BN, yielding ultra-high mobility of ~280,000 cm2 V−1 s−1. Integrated wafer-scale graphene thermal emitters exhibited significant broadband emission in near-infrared (NIR) spectrum. Overall, the proposed methodology is promising for future integration of wafer-scale 2D materials in advanced electronics and optoelectronics.

Suggested Citation

  • Xin Gao & Liming Zheng & Fang Luo & Jun Qian & Jingyue Wang & Mingzhi Yan & Wendong Wang & Qinci Wu & Junchuan Tang & Yisen Cao & Congwei Tan & Jilin Tang & Mengjian Zhu & Yani Wang & Yanglizhi Li & L, 2022. "Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33135-w
    DOI: 10.1038/s41467-022-33135-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33135-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33135-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ji Eun Lee & Gwanghyun Ahn & Jihye Shim & Young Sik Lee & Sunmin Ryu, 2012. "Optical separation of mechanical strain from charge doping in graphene," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    2. Yusuke Miyoshi & Yusuke Fukazawa & Yuya Amasaka & Robin Reckmann & Tomoya Yokoi & Kazuki Ishida & Kenji Kawahara & Hiroki Ago & Hideyuki Maki, 2018. "High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. C. Neumann & S. Reichardt & P. Venezuela & M. Drögeler & L. Banszerus & M. Schmitz & K. Watanabe & T. Taniguchi & F. Mauri & B. Beschoten & S. V. Rotkin & C. Stampfer, 2015. "Raman spectroscopy as probe of nanometre-scale strain variations in graphene," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    4. Pinshane Y. Huang & Carlos S. Ruiz-Vargas & Arend M. van der Zande & William S. Whitney & Mark P. Levendorf & Joshua W. Kevek & Shivank Garg & Jonathan S. Alden & Caleb J. Hustedt & Ye Zhu & Jiwoong P, 2011. "Grains and grain boundaries in single-layer graphene atomic patchwork quilts," Nature, Nature, vol. 469(7330), pages 389-392, January.
    5. Yuan Liu & Xidong Duan & Hyeon-Jin Shin & Seongjun Park & Yu Huang & Xiangfeng Duan, 2021. "Promises and prospects of two-dimensional transistors," Nature, Nature, vol. 591(7848), pages 43-53, March.
    6. Deji Akinwande & Cedric Huyghebaert & Ching-Hua Wang & Martha I. Serna & Stijn Goossens & Lain-Jong Li & H.-S. Philip Wong & Frank H. L. Koppens, 2019. "Graphene and two-dimensional materials for silicon technology," Nature, Nature, vol. 573(7775), pages 507-518, September.
    7. Arne Quellmalz & Xiaojing Wang & Simon Sawallich & Burkay Uzlu & Martin Otto & Stefan Wagner & Zhenxing Wang & Maximilian Prechtl & Oliver Hartwig & Siwei Luo & Georg S. Duesberg & Max C. Lemme & Kris, 2021. "Large-area integration of two-dimensional materials and their heterostructures by wafer bonding," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josef Schätz & Navin Nayi & Jonas Weber & Christoph Metzke & Sebastian Lukas & Jürgen Walter & Tim Schaffus & Fabian Streb & Eros Reato & Agata Piacentini & Annika Grundmann & Holger Kalisch & Michael, 2024. "Button shear testing for adhesion measurements of 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Fankai Zeng & Ran Wang & Wenya Wei & Zuo Feng & Quanlin Guo & Yunlong Ren & Guoliang Cui & Dingxin Zou & Zhensheng Zhang & Song Liu & Kehai Liu & Ying Fu & Jinzong Kou & Li Wang & Xu Zhou & Zhilie Tan, 2023. "Stamped production of single-crystal hexagonal boron nitride monolayers on various insulating substrates," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Yixuan Zhao & Yuqing Song & Zhaoning Hu & Wendong Wang & Zhenghua Chang & Yan Zhang & Qi Lu & Haotian Wu & Junhao Liao & Wentao Zou & Xin Gao & Kaicheng Jia & La Zhuo & Jingyi Hu & Qin Xie & Rui Zhang, 2022. "Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Lingan Kong & Ruixia Wu & Yang Chen & Ying Huangfu & Liting Liu & Wei Li & Donglin Lu & Quanyang Tao & Wenjing Song & Wanying Li & Zheyi Lu & Xiao Liu & Yunxin Li & Zhiwei Li & Wei Tong & Shuimei Ding, 2023. "Wafer-scale and universal van der Waals metal semiconductor contact," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Max C. Lemme & Deji Akinwande & Cedric Huyghebaert & Christoph Stampfer, 2022. "2D materials for future heterogeneous electronics," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    7. Yikai Zheng & Harikrishnan Ravichandran & Thomas F. Schranghamer & Nicholas Trainor & Joan M. Redwing & Saptarshi Das, 2022. "Hardware implementation of Bayesian network based on two-dimensional memtransistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Hao-Ting Chin & Jiri Klimes & I-Fan Hu & Ding-Rui Chen & Hai-Thai Nguyen & Ting-Wei Chen & Shao-Wei Ma & Mario Hofmann & Chi-Te Liang & Ya-Ping Hsieh, 2021. "Ferroelectric 2D ice under graphene confinement," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    11. Daniel Vaquero & Vito Clericò & Michael Schmitz & Juan Antonio Delgado-Notario & Adrian Martín-Ramos & Juan Salvador-Sánchez & Claudius S. A. Müller & Km Rubi & Kenji Watanabe & Takashi Taniguchi & Be, 2023. "Phonon-mediated room-temperature quantum Hall transport in graphene," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    12. Zhenglong Fan & Fan Liao & Yujin Ji & Yang Liu & Hui Huang & Dan Wang & Kui Yin & Haiwei Yang & Mengjie Ma & Wenxiang Zhu & Meng Wang & Zhenhui Kang & Youyong Li & Mingwang Shao & Zhiwei Hu & Qi Shao, 2022. "Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Shuo Dong & Samuel Beaulieu & Malte Selig & Philipp Rosenzweig & Dominik Christiansen & Tommaso Pincelli & Maciej Dendzik & Jonas D. Ziegler & Julian Maklar & R. Patrick Xian & Alexander Neef & Avaise, 2023. "Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Jiabiao Chen & Zhaochao Liu & Xinyue Dong & Zhansheng Gao & Yuxuan Lin & Yuyu He & Yingnan Duan & Tonghuai Cheng & Zhengyang Zhou & Huixia Fu & Feng Luo & Jinxiong Wu, 2023. "Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Xingchen Pang & Yang Wang & Yuyan Zhu & Zhenhan Zhang & Du Xiang & Xun Ge & Haoqi Wu & Yongbo Jiang & Zizheng Liu & Xiaoxian Liu & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Alberto Montanaro & Giulia Piccinini & Vaidotas Mišeikis & Vito Sorianello & Marco A. Giambra & Stefano Soresi & Luca Giorgi & Antonio D’Errico & K. Watanabe & T. Taniguchi & Sergio Pezzini & Camilla , 2023. "Sub-THz wireless transmission based on graphene-integrated optoelectronic mixer," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Maosong Xie & Yueyang Jia & Chen Nie & Zuheng Liu & Alvin Tang & Shiquan Fan & Xiaoyao Liang & Li Jiang & Zhezhi He & Rui Yang, 2023. "Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Sangyong Park & Dongyoung Lee & Juncheol Kang & Hojin Choi & Jin-Hong Park, 2023. "Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33135-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.