IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31800-8.html
   My bibliography  Save this article

In situ atomic-scale observation of dislocation climb and grain boundary evolution in nanostructured metal

Author

Listed:
  • Shufen Chu

    (Shanghai Jiao Tong University)

  • Pan Liu

    (Shanghai Jiao Tong University
    Tohoku University)

  • Yin Zhang

    (Georgia Institute of Technology)

  • Xiaodong Wang

    (Shanghai Jiao Tong University)

  • Shuangxi Song

    (Shanghai Jiao Tong University)

  • Ting Zhu

    (Georgia Institute of Technology)

  • Ze Zhang

    (Zhejiang University)

  • Xiaodong Han

    (Beijing University of Technology)

  • Baode Sun

    (Shanghai Jiao Tong University)

  • Mingwei Chen

    (Johns Hopkins University)

Abstract

Non-conservative dislocation climb plays a unique role in the plastic deformation and creep of crystalline materials. Nevertheless, the underlying atomic-scale mechanisms of dislocation climb have not been explored by direct experimental observations. Here, we report atomic-scale observations of grain boundary (GB) dislocation climb in nanostructured Au during in situ straining at room temperature. The climb of a edge dislocation is found to occur by stress-induced reconstruction of two neighboring atomic columns at the edge of an extra half atomic plane in the dislocation core. This is different from the conventional belief of dislocation climb by destruction or construction of a single atomic column at the dislocation core. The atomic route of the dislocation climb we proposed is demonstrated to be energetically favorable by Monte Carlo simulations. Our in situ observations also reveal GB evolution through dislocation climb at room temperature, which suggests a means of controlling microstructures and properties of nanostructured metals.

Suggested Citation

  • Shufen Chu & Pan Liu & Yin Zhang & Xiaodong Wang & Shuangxi Song & Ting Zhu & Ze Zhang & Xiaodong Han & Baode Sun & Mingwei Chen, 2022. "In situ atomic-scale observation of dislocation climb and grain boundary evolution in nanostructured metal," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31800-8
    DOI: 10.1038/s41467-022-31800-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31800-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31800-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qi Zhu & Qishan Huang & Cao Guang & Xianghai An & Scott X. Mao & Wei Yang & Ze Zhang & Huajian Gao & Haofei Zhou & Jiangwei Wang, 2020. "Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. He Zheng & Ajing Cao & Christopher R. Weinberger & Jian Yu Huang & Kui Du & Jianbo Wang & Yanyun Ma & Younan Xia & Scott X. Mao, 2010. "Discrete plasticity in sub-10-nm-sized gold crystals," Nature Communications, Nature, vol. 1(1), pages 1-8, December.
    3. K. A. Darling & M. Rajagopalan & M. Komarasamy & M. A. Bhatia & B. C. Hornbuckle & R. S. Mishra & K. N. Solanki, 2016. "Extreme creep resistance in a microstructurally stable nanocrystalline alloy," Nature, Nature, vol. 537(7620), pages 378-381, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai Wang & Wei Song & Mingfeng Liu & Shuyuan Zhang & Ling Ren & Dong Qiu & Xing-Qiu Chen & Ke Yang, 2022. "Manufacture-friendly nanostructured metals stabilized by dual-phase honeycomb shell," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Li Zhong & Yin Zhang & Xiang Wang & Ting Zhu & Scott X. Mao, 2024. "Atomic-scale observation of nucleation- and growth-controlled deformation twinning in body-centered cubic nanocrystals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Chengpeng Yang & Bozhao Zhang & Libo Fu & Zhanxin Wang & Jiao Teng & Ruiwen Shao & Ziqi Wu & Xiaoxue Chang & Jun Ding & Lihua Wang & Xiaodong Han, 2023. "Chemical inhomogeneity–induced profuse nanotwinning and phase transformation in AuCu nanowires," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31800-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.