IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30763-0.html
   My bibliography  Save this article

Characterization of SARS-CoV-2 Spike mutations important for infection of mice and escape from human immune sera

Author

Listed:
  • Raveen Rathnasinghe

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai New York
    Seqirus)

  • Sonia Jangra

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York)

  • Chengjin Ye

    (Texas Biomedical Research Institute)

  • Anastasija Cupic

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai New York)

  • Gagandeep Singh

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York)

  • Carles Martínez-Romero

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York)

  • Lubbertus C. F. Mulder

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York)

  • Thomas Kehrer

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai New York)

  • Soner Yildiz

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York)

  • Angela Choi

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai New York
    Moderna Therapeutics)

  • Stephen T. Yeung

    (Weill Cornell Medicine, New York)

  • Ignacio Mena

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York)

  • Virginia Gillespie

    (Icahn School of Medicine at Mount Sinai New York)

  • Jana Vrieze

    (Ghent University)

  • Sadaf Aslam

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York)

  • Daniel Stadlbauer

    (Icahn School of Medicine at Mount Sinai New York
    Moderna Therapeutics)

  • David A. Meekins

    (Kansas State University)

  • Chester D. McDowell

    (Kansas State University)

  • Velmurugan Balaraman

    (Kansas State University)

  • Michael J. Corley

    (Weill Cornell Medicine, New York)

  • Juergen A. Richt

    (Kansas State University)

  • Bruno G. Geest

    (Ghent University)

  • Lisa Miorin

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York)

  • Florian Krammer

    (Icahn School of Medicine at Mount Sinai New York)

  • Luis Martinez-Sobrido

    (Texas Biomedical Research Institute)

  • Viviana Simon

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York)

  • Adolfo García-Sastre

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York)

  • Michael Schotsaert

    (Icahn School of Medicine at Mount Sinai New York
    Icahn School of Medicine at Mount Sinai New York)

Abstract

Due to differences in human and murine angiotensin converting enzyme 2 (ACE-2) receptor, initially available SARS-CoV-2 isolates could not infect mice. Here we show that serial passaging of USA-WA1/2020 strain in mouse lungs results in “mouse-adapted” SARS-CoV-2 (MA-SARS-CoV-2) with mutations in S, M, and N genes, and a twelve-nucleotide insertion in the S gene. MA-SARS-CoV-2 infection causes mild disease, with more pronounced morbidity depending on genetic background and in aged and obese mice. Two mutations in the S gene associated with mouse adaptation (N501Y, H655Y) are present in SARS-CoV-2 variants of concern (VoCs). N501Y in the receptor binding domain of viruses of the B.1.1.7, B.1.351, P.1 and B.1.1.529 lineages (Alpha, Beta, Gamma and Omicron variants) is associated with high transmissibility and allows VoCs to infect wild type mice. We further show that S protein mutations of MA-SARS-CoV-2 do not affect neutralization efficiency by human convalescent and post vaccination sera.

Suggested Citation

  • Raveen Rathnasinghe & Sonia Jangra & Chengjin Ye & Anastasija Cupic & Gagandeep Singh & Carles Martínez-Romero & Lubbertus C. F. Mulder & Thomas Kehrer & Soner Yildiz & Angela Choi & Stephen T. Yeung , 2022. "Characterization of SARS-CoV-2 Spike mutations important for infection of mice and escape from human immune sera," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30763-0
    DOI: 10.1038/s41467-022-30763-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30763-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30763-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 588(7836), pages 6-6, December.
    2. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 579(7798), pages 270-273, March.
    3. Lizhou Zhang & Cody B. Jackson & Huihui Mou & Amrita Ojha & Haiyong Peng & Brian D. Quinlan & Erumbi S. Rangarajan & Andi Pan & Abigail Vanderheiden & Mehul S. Suthar & Wenhui Li & Tina Izard & Christ, 2020. "SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Kenneth H. Dinnon & Sarah R. Leist & Alexandra Schäfer & Caitlin E. Edwards & David R. Martinez & Stephanie A. Montgomery & Ande West & Boyd L. Yount & Yixuan J. Hou & Lily E. Adams & Kendra L. Gully , 2020. "A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures," Nature, Nature, vol. 586(7830), pages 560-566, October.
    5. Satoshi Ikegame & Mohammed N. A. Siddiquey & Chuan-Tien Hung & Griffin Haas & Luca Brambilla & Kasopefoluwa Y. Oguntuyo & Shreyas Kowdle & Hsin-Ping Chiu & Christian S. Stevens & Ariel Esteban Vilardo, 2021. "Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davida S. Smyth & Monica Trujillo & Devon A. Gregory & Kristen Cheung & Anna Gao & Maddie Graham & Yue Guan & Caitlyn Guldenpfennig & Irene Hoxie & Sherin Kannoly & Nanami Kubota & Terri D. Lyddon & M, 2022. "Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Graziella Orrù & Ciro Conversano & Eleonora Malloggi & Francesca Francesconi & Rebecca Ciacchini & Angelo Gemignani, 2020. "Neurological Complications of COVID-19 and Possible Neuroinvasion Pathways: A Systematic Review," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    3. Britton Boras & Rhys M. Jones & Brandon J. Anson & Dan Arenson & Lisa Aschenbrenner & Malina A. Bakowski & Nathan Beutler & Joseph Binder & Emily Chen & Heather Eng & Holly Hammond & Jennifer Hammond , 2021. "Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Yongzhu Xiong & Yunpeng Wang & Feng Chen & Mingyong Zhu, 2020. "Spatial Statistics and Influencing Factors of the COVID-19 Epidemic at Both Prefecture and County Levels in Hubei Province, China," IJERPH, MDPI, vol. 17(11), pages 1-26, May.
    5. Eugene Song & Jae-Eun Lee & Seola Kwon, 2021. "Effect of Public Empathy with Infection-Control Guidelines on Infection-Prevention Attitudes and Behaviors: Based on the Case of COVID-19," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    6. Jaeyong Lee & Calem Kenward & Liam J. Worrall & Marija Vuckovic & Francesco Gentile & Anh-Tien Ton & Myles Ng & Artem Cherkasov & Natalie C. J. Strynadka & Mark Paetzel, 2022. "X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Xu, Baochang & Li, Sihui & Afzal, Ayesha & Mirza, Nawazish & Zhang, Meng, 2022. "The impact of financial development on environmental sustainability: A European perspective," Resources Policy, Elsevier, vol. 78(C).
    8. Nur Hannani Bi Rahman & Shazmin Shareena A. Azis & Ibrahim Sipan, 2021. "COVID-19: Standard Operating Procedure Improvement For Green Office Building Using Indoor Environmental Quality," LARES lares-2021-4dqg, Latin American Real Estate Society (LARES).
    9. Eduardo Gutiérrez-Abejón & Eduardo Tamayo & Débora Martín-García & F. Javier Álvarez & Francisco Herrera-Gómez, 2020. "Clinical Profile, Treatment and Predictors during the First COVID-19 Wave: A Population-Based Registry Analysis from Castile and Leon Hospitals," IJERPH, MDPI, vol. 17(24), pages 1-15, December.
    10. Meriem Bekliz & Kenneth Adea & Pauline Vetter & Christiane S. Eberhardt & Krisztina Hosszu-Fellous & Diem-Lan Vu & Olha Puhach & Manel Essaidi-Laziosi & Sophie Waldvogel-Abramowski & Caroline Stephan , 2022. "Neutralization capacity of antibodies elicited through homologous or heterologous infection or vaccination against SARS-CoV-2 VOCs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Maria de Lourdes Aguiar-Oliveira & Aline Campos & Aline R. Matos & Caroline Rigotto & Adriana Sotero-Martins & Paulo F. P. Teixeira & Marilda M. Siqueira, 2020. "Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance—A Brief Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    12. Daiki Yamaguchi & Odgerel Chimed-Ochir & Yui Yumiya & Eisaku Kishita & Tomoyuki Akita & Junko Tanaka & Tatsuhiko Kubo, 2024. "Potential Risk Factors to COVID-19 Severity: Comparison of SARS-CoV-2 Delta- and Omicron-Dominant Periods," IJERPH, MDPI, vol. 21(3), pages 1-11, March.
    13. Dunbar, Kwamie, 2022. "Impact of the COVID-19 event on U.S. banks’ financial soundness," Research in International Business and Finance, Elsevier, vol. 59(C).
    14. Jian Rong & Ahmed Haider & Troels E. Jeppesen & Lee Josephson & Steven H. Liang, 2023. "Radiochemistry for positron emission tomography," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    15. Cecilia A. Sánchez & Hongying Li & Kendra L. Phelps & Carlos Zambrana-Torrelio & Lin-Fa Wang & Peng Zhou & Zheng-Li Shi & Kevin J. Olival & Peter Daszak, 2022. "A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Sarwan Ali & Babatunde Bello & Murray Patterson, 2023. "Solvent Accessibility of Coronaviridae Spike Proteins through the Lens of Information Gain," J, MDPI, vol. 6(2), pages 1-12, April.
    17. Agata Jabłońska-Trypuć & Marcin Makuła & Maria Włodarczyk-Makuła & Elżbieta Wołejko & Urszula Wydro & Lluis Serra-Majem & Józefa Wiater, 2022. "Inanimate Surfaces as a Source of Hospital Infections Caused by Fungi, Bacteria and Viruses with Particular Emphasis on SARS-CoV-2," IJERPH, MDPI, vol. 19(13), pages 1-22, July.
    18. Yongin Choi & James Slghee Kim & Heejin Choi & Hyojung Lee & Chang Hyeong Lee, 2020. "Assessment of Social Distancing for Controlling COVID-19 in Korea: An Age-Structured Modeling Approach," IJERPH, MDPI, vol. 17(20), pages 1-16, October.
    19. Diego Fernández-Lázaro & Jerónimo J. González-Bernal & Nerea Sánchez-Serrano & Lourdes Jiménez Navascués & Ana Ascaso-del-Río & Juan Mielgo-Ayuso, 2020. "Physical Exercise as a Multimodal Tool for COVID-19: Could It Be Used as a Preventive Strategy?," IJERPH, MDPI, vol. 17(22), pages 1-13, November.
    20. Federico Alcide Villani & Riccardo Aiuto & Luigi Paglia & Dino Re, 2020. "COVID-19 and Dentistry: Prevention in Dental Practice, a Literature Review," IJERPH, MDPI, vol. 17(12), pages 1-12, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30763-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.