IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30736-3.html
   My bibliography  Save this article

Stable choice coding in rat frontal orienting fields across model-predicted changes of mind

Author

Listed:
  • J. Tyler Boyd-Meredith

    (Princeton University)

  • Alex T. Piet

    (Princeton University
    Allen Institute)

  • Emily Jane Dennis

    (Princeton University)

  • Ahmed El Hady

    (Princeton University)

  • Carlos D. Brody

    (Princeton University
    Princeton University)

Abstract

During decision making in a changing environment, evidence that may guide the decision accumulates until the point of action. In the rat, provisional choice is thought to be represented in frontal orienting fields (FOF), but this has only been tested in static environments where provisional and final decisions are not easily dissociated. Here, we characterize the representation of accumulated evidence in the FOF of rats performing a recently developed dynamic evidence accumulation task, which induces changes in the provisional decision, referred to as “changes of mind”. We find that FOF encodes evidence throughout decision formation with a temporal gain modulation that rises until the period when the animal may need to act. Furthermore, reversals in FOF firing rates can be accounted for by changes of mind predicted using a model of the decision process fit only to behavioral data. Our results suggest that the FOF represents provisional decisions even in dynamic, uncertain environments, allowing for rapid motor execution when it is time to act.

Suggested Citation

  • J. Tyler Boyd-Meredith & Alex T. Piet & Emily Jane Dennis & Ahmed El Hady & Carlos D. Brody, 2022. "Stable choice coding in rat frontal orienting fields across model-predicted changes of mind," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30736-3
    DOI: 10.1038/s41467-022-30736-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30736-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30736-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothy D. Hanks & Charles D. Kopec & Bingni W. Brunton & Chunyu A. Duan & Jeffrey C. Erlich & Carlos D. Brody, 2015. "Distinct relationships of parietal and prefrontal cortices to evidence accumulation," Nature, Nature, vol. 520(7546), pages 220-223, April.
    2. Diogo Peixoto & Jessica R. Verhein & Roozbeh Kiani & Jonathan C. Kao & Paul Nuyujukian & Chandramouli Chandrasekaran & Julian Brown & Sania Fong & Stephen I. Ryu & Krishna V. Shenoy & William T. Newso, 2021. "Decoding and perturbing decision states in real time," Nature, Nature, vol. 591(7851), pages 604-609, March.
    3. Ian Krajbich & Todd Hare & Björn Bartling & Yosuke Morishima & Ernst Fehr, 2015. "A Common Mechanism Underlying Food Choice and Social Decisions," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-24, October.
    4. Arbora Resulaj & Roozbeh Kiani & Daniel M. Wolpert & Michael N. Shadlen, 2009. "Changes of mind in decision-making," Nature, Nature, vol. 461(7261), pages 263-266, September.
    5. Nuo Li & Kayvon Daie & Karel Svoboda & Shaul Druckmann, 2016. "Correction: Corrigendum: Robust neuronal dynamics in premotor cortex during motor planning," Nature, Nature, vol. 537(7618), pages 122-122, September.
    6. Nadim A. A. Atiya & Iñaki Rañó & Girijesh Prasad & KongFatt Wong-Lin, 2019. "A neural circuit model of decision uncertainty and change-of-mind," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    7. Genís Prat-Ortega & Klaus Wimmer & Alex Roxin & Jaime Rocha, 2021. "Flexible categorization in perceptual decision making," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    8. Nuo Li & Kayvon Daie & Karel Svoboda & Shaul Druckmann, 2016. "Robust neuronal dynamics in premotor cortex during motor planning," Nature, Nature, vol. 532(7600), pages 459-464, April.
    9. Alex T. Piet & Ahmed El Hady & Carlos D. Brody, 2018. "Rats adopt the optimal timescale for evidence integration in a dynamic environment," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Wei Chia & Jian Kwang Tan & Lee Fang Ang & Tsukasa Kamigaki & Hiroshi Makino, 2023. "Emergence of cortical network motifs for short-term memory during learning," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Lluís Hernández-Navarro & Ainhoa Hermoso-Mendizabal & Daniel Duque & Jaime de la Rocha & Alexandre Hyafil, 2021. "Proactive and reactive accumulation-to-bound processes compete during perceptual decisions," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Huee Ru Chong & Yadollah Ranjbar-Slamloo & Malcolm Zheng Hao Ho & Xuan Ouyang & Tsukasa Kamigaki, 2023. "Functional alterations of the prefrontal circuit underlying cognitive aging in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Jacob D Davidson & Ahmed El Hady, 2019. "Foraging as an evidence accumulation process," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-25, July.
    5. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    6. Diksha Gupta & Brian DePasquale & Charles D. Kopec & Carlos D. Brody, 2024. "Trial-history biases in evidence accumulation can give rise to apparent lapses in decision-making," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. João D. Semedo & Anna I. Jasper & Amin Zandvakili & Aravind Krishna & Amir Aschner & Christian K. Machens & Adam Kohn & Byron M. Yu, 2022. "Feedforward and feedback interactions between visual cortical areas use different population activity patterns," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Tanner C Dixon & Christina M Merrick & Joni D Wallis & Richard B Ivry & Jose M Carmena, 2021. "Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-35, November.
    9. Richard D Lange & Ankani Chattoraj & Jeffrey M Beck & Jacob L Yates & Ralf M Haefner, 2021. "A confirmation bias in perceptual decision-making due to hierarchical approximate inference," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-30, November.
    10. Christopher F. Angeloni & Wiktor Młynarski & Eugenio Piasini & Aaron M. Williams & Katherine C. Wood & Linda Garami & Ann M. Hermundstad & Maria N. Geffen, 2023. "Dynamics of cortical contrast adaptation predict perception of signals in noise," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Alyse Thomas & Weiguo Yang & Catherine Wang & Sri Laasya Tipparaju & Guang Chen & Brennan Sullivan & Kylie Swiekatowski & Mahima Tatam & Charles Gerfen & Nuo Li, 2023. "Superior colliculus bidirectionally modulates choice activity in frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    12. Kaushik J Lakshminarasimhan & Alexandre Pouget & Gregory C DeAngelis & Dora E Angelaki & Xaq Pitkow, 2018. "Inferring decoding strategies for multiple correlated neural populations," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-40, September.
    13. Zohar Z Bronfman & Noam Brezis & Marius Usher, 2016. "Non-monotonic Temporal-Weighting Indicates a Dynamically Modulated Evidence-Integration Mechanism," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-21, February.
    14. Manuel Rausch & Michael Zehetleitner, 2019. "The folded X-pattern is not necessarily a statistical signature of decision confidence," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-18, October.
    15. Daniel Serra, 2019. "La neuroéconomie en question : débats et controverses," CEE-M Working Papers halshs-02160911, CEE-M, Universtiy of Montpellier, CNRS, INRA, Montpellier SupAgro.
    16. Konstantinos Tsetsos & Thomas Pfeffer & Pia Jentgens & Tobias H Donner, 2015. "Action Planning and the Timescale of Evidence Accumulation," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    17. Adrian M Haith & David M Huberdeau & John W Krakauer, 2015. "Hedging Your Bets: Intermediate Movements as Optimal Behavior in the Context of an Incomplete Decision," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-21, March.
    18. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    19. Andrea Insabato & Mario Pannunzi & Gustavo Deco, 2017. "Multiple Choice Neurodynamical Model of the Uncertain Option Task," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-29, January.
    20. Daniel Serra, 2019. "Neuroeconomics and modern neuroscience," CEE-M Working Papers halshs-02160907, CEE-M, Universtiy of Montpellier, CNRS, INRA, Montpellier SupAgro.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30736-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.