IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30553-8.html
   My bibliography  Save this article

The RNA-bound proteome of MRSA reveals post-transcriptional roles for helix-turn-helix DNA-binding and Rossmann-fold proteins

Author

Listed:
  • Liang-Cui Chu

    (University of Edinburgh)

  • Pedro Arede

    (University of Edinburgh)

  • Wei Li

    (University of Edinburgh)

  • Erika C. Urdaneta

    (Humboldt University Berlin)

  • Ivayla Ivanova

    (University of Edinburgh)

  • Stuart W. McKellar

    (University of Edinburgh)

  • Jimi C. Wills

    (University of Edinburgh)

  • Theresa Fröhlich

    (University of Edinburgh)

  • Alexander Kriegsheim

    (University of Edinburgh)

  • Benedikt M. Beckmann

    (Humboldt University Berlin)

  • Sander Granneman

    (University of Edinburgh)

Abstract

RNA-binding proteins play key roles in controlling gene expression in many organisms, but relatively few have been identified and characterised in detail in Gram-positive bacteria. Here, we globally analyse RNA-binding proteins in methicillin-resistant Staphylococcus aureus (MRSA) using two complementary biochemical approaches. We identify hundreds of putative RNA-binding proteins, many containing unconventional RNA-binding domains such as Rossmann-fold domains. Remarkably, more than half of the proteins containing helix-turn-helix (HTH) domains, which are frequently found in prokaryotic transcription factors, bind RNA in vivo. In particular, the CcpA transcription factor, a master regulator of carbon metabolism, uses its HTH domain to bind hundreds of RNAs near intrinsic transcription terminators in vivo. We propose that CcpA, besides acting as a transcription factor, post-transcriptionally regulates the stability of many RNAs.

Suggested Citation

  • Liang-Cui Chu & Pedro Arede & Wei Li & Erika C. Urdaneta & Ivayla Ivanova & Stuart W. McKellar & Jimi C. Wills & Theresa Fröhlich & Alexander Kriegsheim & Benedikt M. Beckmann & Sander Granneman, 2022. "The RNA-bound proteome of MRSA reveals post-transcriptional roles for helix-turn-helix DNA-binding and Rossmann-fold proteins," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30553-8
    DOI: 10.1038/s41467-022-30553-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30553-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30553-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donny D. Licatalosi & Aldo Mele & John J. Fak & Jernej Ule & Melis Kayikci & Sung Wook Chi & Tyson A. Clark & Anthony C. Schweitzer & John E. Blume & Xuning Wang & Jennifer C. Darnell & Robert B. Darn, 2008. "HITS-CLIP yields genome-wide insights into brain alternative RNA processing," Nature, Nature, vol. 456(7221), pages 464-469, November.
    2. Rob van Nues & Gabriele Schweikert & Erica de Leau & Alina Selega & Andrew Langford & Ryan Franklin & Ira Iosub & Peter Wadsworth & Guido Sanguinetti & Sander Granneman, 2017. "Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress," Nature Communications, Nature, vol. 8(1), pages 1-18, December.
    3. Thomas Conrad & Anne-Susann Albrecht & Veronica Rodrigues de Melo Costa & Sascha Sauer & David Meierhofer & Ulf Andersson Ørom, 2016. "Serial interactome capture of the human cell nucleus," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ross A. Cordiner & Yuhui Dou & Rune Thomsen & Andrii Bugai & Sander Granneman & Torben Heick Jensen, 2023. "Temporal-iCLIP captures co-transcriptional RNA-protein interactions," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Haofan Sun & Bin Fu & Xiaohong Qian & Ping Xu & Weijie Qin, 2024. "Nuclear and cytoplasmic specific RNA binding proteome enrichment and its changes upon ferroptosis induction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Joel I. Perez-Perri & Dunja Ferring-Appel & Ina Huppertz & Thomas Schwarzl & Sudeep Sahadevan & Frank Stein & Mandy Rettel & Bruno Galy & Matthias W. Hentze, 2023. "The RNA-binding protein landscapes differ between mammalian organs and cultured cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Johanna Luige & Alexandros Armaos & Gian Gaetano Tartaglia & Ulf Andersson Vang Ørom, 2024. "Predicting nuclear G-quadruplex RNA-binding proteins with roles in transcription and phase separation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Areum Han & Peter Stoilov & Anthony J Linares & Yu Zhou & Xiang-Dong Fu & Douglas L Black, 2014. "De Novo Prediction of PTBP1 Binding and Splicing Targets Reveals Unexpected Features of Its RNA Recognition and Function," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-18, January.
    6. Wei Hu & Yangjun Wu & Qili Shi & Jingni Wu & Deping Kong & Xiaohua Wu & Xianghuo He & Teng Liu & Shengli Li, 2022. "Systematic characterization of cancer transcriptome at transcript resolution," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Haoran Zhu & Yuning Yang & Yunhe Wang & Fuzhou Wang & Yujian Huang & Yi Chang & Ka-chun Wong & Xiangtao Li, 2023. "Dynamic characterization and interpretation for protein-RNA interactions across diverse cellular conditions using HDRNet," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    8. Huijuan Feng & Xiang-Jun Lu & Suvrajit Maji & Linxi Liu & Dmytro Ustianenko & Noam D. Rudnick & Chaolin Zhang, 2024. "Structure-based prediction and characterization of photo-crosslinking in native protein–RNA complexes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. André Corvelo & Martina Hallegger & Christopher W J Smith & Eduardo Eyras, 2010. "Genome-Wide Association between Branch Point Properties and Alternative Splicing," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-13, November.
    10. Zhiping Zhang & Bongmin Bae & Winston H. Cuddleston & Pedro Miura, 2023. "Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Elizabeth A. Werren & Geneva R. LaForce & Anshika Srivastava & Delia R. Perillo & Shaokun Li & Katherine Johnson & Safa Baris & Brandon Berger & Samantha L. Regan & Christian D. Pfennig & Sonja Munnik, 2024. "TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    12. Tao Wang & Beibei Chen & MinSoo Kim & Yang Xie & Guanghua Xiao, 2014. "A Model-Based Approach to Identify Binding Sites in CLIP-Seq Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    13. Shivali Patel & Alec N. Sexton & Madison S. Strine & Craig B. Wilen & Matthew D. Simon & Anna Marie Pyle, 2023. "Systematic detection of tertiary structural modules in large RNAs and RNP interfaces by Tb-seq," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Xiangbin Ruan & Kaining Hu & Xiaochang Zhang, 2023. "PIE-seq: identifying RNA-binding protein targets by dual RNA-deaminase editing and sequencing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Andrew J. Heindel & Jeffrey W. Brulet & Xiantao Wang & Michael W. Founds & Adam H. Libby & Dina L. Bai & Michael C. Lemke & David M. Leace & Thurl E. Harris & Markus Hafner & Ku-Lung Hsu, 2023. "Chemoproteomic capture of RNA binding activity in living cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Raphaël Dos Reis & Etienne Kornobis & Alyssa Pereira & Frederic Tores & Judit Carrasco & Candice Gautier & Céline Jahannault-Talignani & Patrick Nitschké & Christian Muchardt & Andreas Schlosser & Han, 2022. "Complex regulation of Gephyrin splicing is a determinant of inhibitory postsynaptic diversity," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    17. Daniel G. Mediati & Julia L. Wong & Wei Gao & Stuart McKellar & Chi Nam Ignatius Pang & Sylvania Wu & Winton Wu & Brandon Sy & Ian R. Monk & Joanna M. Biazik & Marc R. Wilkins & Benjamin P. Howden & T, 2022. "RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30553-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.