IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57671-3.html
   My bibliography  Save this article

An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions

Author

Listed:
  • Varshni Rajagopal

    (German Cancer Research Center (DKFZ))

  • Jeanette Seiler

    (German Cancer Research Center (DKFZ))

  • Isha Nasa

    (Geisel School of Medicine at Dartmouth
    Geisel School of Medicine at Dartmouth)

  • Simona Cantarella

    (German Cancer Research Center (DKFZ))

  • Jana Theiss

    (German Cancer Research Center (DKFZ))

  • Franziska Herget

    (German Cancer Research Center (DKFZ))

  • Bianca Kaifer

    (German Cancer Research Center (DKFZ))

  • Melina Klostermann

    (Buchmann Institute for Molecular Life Sciences
    University of Würzburg)

  • Rainer Will

    (German Cancer Research Center (DKFZ))

  • Martin Schneider

    (German Cancer Research Center (DKFZ))

  • Dominic Helm

    (German Cancer Research Center (DKFZ))

  • Julian König

    (Institute of Molecular Biology (IMB)
    University of Würzburg)

  • Kathi Zarnack

    (Buchmann Institute for Molecular Life Sciences
    University of Würzburg)

  • Sven Diederichs

    (University of Freiburg
    a partnership between DKFZ and University Medical Center Freiburg)

  • Arminja N. Kettenbach

    (Geisel School of Medicine at Dartmouth
    Geisel School of Medicine at Dartmouth)

  • Maïwen Caudron-Herger

    (German Cancer Research Center (DKFZ))

Abstract

Ribonucleoprotein complexes are dynamic assemblies of RNA with RNA-binding proteins, which modulate the fate of RNA. Inversely, RNA riboregulates the interactions and functions of the associated proteins. Dysregulation of ribonucleoprotein functions is linked to diseases such as cancer and neurological disorders. In dividing cells, RNA and RNA-binding proteins are present in mitotic structures, but their impact on cell division remains unclear. By applying the proteome-wide R-DeeP strategy to cells synchronized in mitosis versus interphase integrated with the RBP2GO knowledge, we provided an atlas of RNA-dependent proteins in cell division, accessible at R-DeeP3.dkfz.de. We uncovered AURKA, KIFC1 and TPX2 as unconventional RNA-binding proteins. KIFC1 was identified as a new substrate of AURKA, and new TPX2-interacting protein. Their pair-wise interactions were RNA dependent. In addition, RNA stimulated AURKA kinase activity and stabilized its conformation. In this work, we highlighted riboregulation of major mitotic factors as an additional complexity level of cell division.

Suggested Citation

  • Varshni Rajagopal & Jeanette Seiler & Isha Nasa & Simona Cantarella & Jana Theiss & Franziska Herget & Bianca Kaifer & Melina Klostermann & Rainer Will & Martin Schneider & Dominic Helm & Julian König, 2025. "An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions," Nature Communications, Nature, vol. 16(1), pages 1-24, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57671-3
    DOI: 10.1038/s41467-025-57671-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57671-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57671-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Hollin & Steven Abel & Charles Banks & Borislav Hristov & Jacques Prudhomme & Kianna Hales & Laurence Florens & William Stafford Noble & Karine G. Le Roch, 2024. "Proteome-Wide Identification of RNA-dependent proteins and an emerging role for RNAs in Plasmodium falciparum protein complexes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Joel I. Perez-Perri & Birgit Rogell & Thomas Schwarzl & Frank Stein & Yang Zhou & Mandy Rettel & Annika Brosig & Matthias W. Hentze, 2018. "Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Benedikt M. Beckmann & Rastislav Horos & Bernd Fischer & Alfredo Castello & Katrin Eichelbaum & Anne-Marie Alleaume & Thomas Schwarzl & Tomaž Curk & Sophia Foehr & Wolfgang Huber & Jeroen Krijgsveld &, 2015. "The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    4. Björn Schwanhäusser & Dorothea Busse & Na Li & Gunnar Dittmar & Johannes Schuchhardt & Jana Wolf & Wei Chen & Matthias Selbach, 2011. "Global quantification of mammalian gene expression control," Nature, Nature, vol. 473(7347), pages 337-342, May.
    5. Thomas Conrad & Anne-Susann Albrecht & Veronica Rodrigues de Melo Costa & Sascha Sauer & David Meierhofer & Ulf Andersson Ørom, 2016. "Serial interactome capture of the human cell nucleus," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    6. Lovorka Stojic & Aaron T. L. Lun & Patrice Mascalchi & Christina Ernst & Aisling M. Redmond & Jasmin Mangei & Alexis R. Barr & Vicky Bousgouni & Chris Bakal & John C. Marioni & Duncan T. Odom & Fanni , 2020. "A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division," Nature Communications, Nature, vol. 11(1), pages 1-21, December.
    7. Matthew R. King & Sabine Petry, 2020. "Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew J. Heindel & Jeffrey W. Brulet & Xiantao Wang & Michael W. Founds & Adam H. Libby & Dina L. Bai & Michael C. Lemke & David M. Leace & Thurl E. Harris & Markus Hafner & Ku-Lung Hsu, 2023. "Chemoproteomic capture of RNA binding activity in living cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Haofan Sun & Bin Fu & Xiaohong Qian & Ping Xu & Weijie Qin, 2024. "Nuclear and cytoplasmic specific RNA binding proteome enrichment and its changes upon ferroptosis induction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Joel I. Perez-Perri & Dunja Ferring-Appel & Ina Huppertz & Thomas Schwarzl & Sudeep Sahadevan & Frank Stein & Mandy Rettel & Bruno Galy & Matthias W. Hentze, 2023. "The RNA-binding protein landscapes differ between mammalian organs and cultured cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Johanna Luige & Alexandros Armaos & Gian Gaetano Tartaglia & Ulf Andersson Vang Ørom, 2024. "Predicting nuclear G-quadruplex RNA-binding proteins with roles in transcription and phase separation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. JohnCarlo Kristofich & Christopher V. Nicchitta, 2023. "Signal-noise metrics for RNA binding protein identification reveal broad spectrum protein-RNA interaction frequencies and dynamics," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Ji Min Lee & Henrik M. Hammarén & Mikhail M. Savitski & Sung Hee Baek, 2023. "Control of protein stability by post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    8. Beatrice Ramm & Dominik Schumacher & Andrea Harms & Tamara Heermann & Philipp Klos & Franziska Müller & Petra Schwille & Lotte Søgaard-Andersen, 2023. "Biomolecular condensate drives polymerization and bundling of the bacterial tubulin FtsZ to regulate cell division," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    9. Jasjot Singh & Hadeer Elhabashy & Pathma Muthukottiappan & Markus Stepath & Martin Eisenacher & Oliver Kohlbacher & Volkmar Gieselmann & Dominic Winter, 2022. "Cross-linking of the endolysosomal system reveals potential flotillin structures and cargo," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Lukas Bartonek & Bojan Zagrovic, 2017. "mRNA/protein sequence complementarity and its determinants: The impact of affinity scales," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-16, July.
    11. Yuping Chen & Jo-Hsi Huang & Connie Phong & James E. Ferrell, 2024. "Viscosity-dependent control of protein synthesis and degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Gábor Csárdi & Alexander Franks & David S Choi & Edoardo M Airoldi & D Allan Drummond, 2015. "Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast," PLOS Genetics, Public Library of Science, vol. 11(5), pages 1-32, May.
    13. Du-Hwa Lee & Ho-Seok Lee & Min-Soo Choi & Katarzyna Parys & Kaori Honda & Yasumitsu Kondoh & Jung-Min Lee & Natalie Edelbacher & Geon Heo & Balaji Enugutti & Hiroyuki Osada & Ken Shirasu & Youssef Bel, 2024. "Reprogramming of flagellin receptor responses with surrogate ligands," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Yan Li & Chen Xu & Bing Wang & Fujiang Xu & Fahan Ma & Yuanyuan Qu & Dongxian Jiang & Kai Li & Jinwen Feng & Sha Tian & Xiaohui Wu & Yunzhi Wang & Yang Liu & Zhaoyu Qin & Yalan Liu & Jing Qin & Qi Son, 2022. "Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals potential therapeutic strategies," Nature Communications, Nature, vol. 13(1), pages 1-26, December.
    15. Meeli Mullari & Nicolas Fossat & Niels H. Skotte & Andrea Asenjo-Martinez & David T. Humphreys & Jens Bukh & Agnete Kirkeby & Troels K. H. Scheel & Michael L. Nielsen, 2023. "Characterising the RNA-binding protein atlas of the mammalian brain uncovers RBM5 misregulation in mouse models of Huntington’s disease," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Kaslik, Eva & Rădulescu, Ileana Rodica, 2022. "Stability and bifurcations in fractional-order gene regulatory networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    17. Suran Kim & Sungjin Min & Yi Sun Choi & Sung-Hyun Jo & Jae Hun Jung & Kyusun Han & Jin Kim & Soohwan An & Yong Woo Ji & Yun-Gon Kim & Seung-Woo Cho, 2022. "Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    18. Jingbo Qie & Yang Liu & Yunzhi Wang & Fan Zhang & Zhaoyu Qin & Sha Tian & Mingwei Liu & Kai Li & Wenhao Shi & Lei Song & Mingjun Sun & Yexin Tong & Ping Hu & Tao Gong & Xiaqiong Wang & Yi Huang & Bolo, 2022. "Integrated proteomic and transcriptomic landscape of macrophages in mouse tissues," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    19. Lingling Li & Dongxian Jiang & Qiao Zhang & Hui Liu & Fujiang Xu & Chunmei Guo & Zhaoyu Qin & Haixing Wang & Jinwen Feng & Yang Liu & Weijie Chen & Xue Zhang & Lin Bai & Sha Tian & Subei Tan & Chen Xu, 2023. "Integrative proteogenomic characterization of early esophageal cancer," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    20. Thomas C. J. Tan & Van Kelly & Xiaoyan Zou & David Wright & Tony Ly & Rose Zamoyska, 2022. "Translation factor eIF5a is essential for IFNγ production and cell cycle regulation in primary CD8+ T lymphocytes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57671-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.