IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29273-w.html
   My bibliography  Save this article

Crystal Structures of Wolbachia CidA and CidB Reveal Determinants of Bacteria-induced Cytoplasmic Incompatibility and Rescue

Author

Listed:
  • Haofeng Wang

    (Tianjin University
    Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University
    Shanghai Clinical Research and Trial Center)

  • Yunjie Xiao

    (Tianjin University
    Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University
    Shanghai Clinical Research and Trial Center
    Institute of Life Sciences, Chongqing Medical University)

  • Xia Chen

    (Tianjin University)

  • Mengwen Zhang

    (Yale University
    Yale University)

  • Guangxin Sun

    (Yale University)

  • Feng Wang

    (Tianjin University)

  • Lin Wang

    (Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University
    Shanghai Clinical Research and Trial Center)

  • Hanxiao Zhang

    (Tianjin University)

  • Xiaoyu Zhang

    (Tianjin University
    Nankai University
    Tianjin International Joint Academy of Biotechnology and Medicine)

  • Xin Yang

    (Institute of Life Sciences, Chongqing Medical University)

  • Wenling Li

    (Tianjin University)

  • Yi Wei

    (Tianjin University)

  • Deqiang Yao

    (Shanghai Jiao Tong University)

  • Bing Zhang

    (Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University)

  • Jun Li

    (Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University)

  • Wen Cui

    (Tianjin University
    Institute of Life Sciences, Chongqing Medical University)

  • Fenghua Wang

    (Tianjin University)

  • Cheng Chen

    (Tianjin University)

  • Wei Shen

    (Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University
    Shanghai Clinical Research and Trial Center)

  • Dan Su

    (Sichuan University and Collaborative Innovation Center for Biotherapy)

  • Fang Bai

    (Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University
    Shanghai Clinical Research and Trial Center)

  • Jinhai Huang

    (Tianjin University)

  • Sheng Ye

    (Tianjin University)

  • Lei Zhang

    (Tianjin University)

  • Xiaoyun Ji

    (Nanjing University)

  • Wei Wang

    (Institute of Life Sciences, Chongqing Medical University)

  • Zefang Wang

    (Tianjin University
    Tianjin International Joint Academy of Biotechnology and Medicine)

  • Mark Hochstrasser

    (Yale University)

  • Haitao Yang

    (Tianjin University
    Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University
    Shanghai Clinical Research and Trial Center
    Tianjin International Joint Academy of Biotechnology and Medicine)

Abstract

Cytoplasmic incompatibility (CI) results when Wolbachia bacteria-infected male insects mate with uninfected females, leading to embryonic lethality. “Rescue” of viability occurs if the female harbors the same Wolbachia strain. CI is caused by linked pairs of Wolbachia genes called CI factors (CifA and CifB). The co-evolution of CifA-CifB pairs may account in part for the incompatibility patterns documented in insects infected with different Wolbachia strains, but the molecular mechanisms remain elusive. Here, we use X-ray crystallography and AlphaFold to analyze the CI factors from Wolbachia strain wMel called CidAwMel and CidBwMel. Substituting CidAwMel interface residues with those from CidAwPip (from strain wPip) enables the mutant protein to bind CidBwPip and rescue CidBwPip-induced yeast growth defects, supporting the importance of CifA-CifB interaction in CI rescue. Sequence divergence in CidAwPip and CidBwPip proteins affects their pairwise interactions, which may help explain the complex incompatibility patterns of mosquitoes infected with different wPip strains.

Suggested Citation

  • Haofeng Wang & Yunjie Xiao & Xia Chen & Mengwen Zhang & Guangxin Sun & Feng Wang & Lin Wang & Hanxiao Zhang & Xiaoyu Zhang & Xin Yang & Wenling Li & Yi Wei & Deqiang Yao & Bing Zhang & Jun Li & Wen Cu, 2022. "Crystal Structures of Wolbachia CidA and CidB Reveal Determinants of Bacteria-induced Cytoplasmic Incompatibility and Rescue," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29273-w
    DOI: 10.1038/s41467-022-29273-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29273-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29273-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Daniel P. LePage & Jason A. Metcalf & Sarah R. Bordenstein & Jungmin On & Jessamyn I. Perlmutter & J. Dylan Shropshire & Emily M. Layton & Lisa J. Funkhouser-Jones & John F. Beckmann & Seth R. Bordens, 2017. "Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility," Nature, Nature, vol. 543(7644), pages 243-247, March.
    3. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    4. Manon Bonneau & Celestine Atyame & Marwa Beji & Fabienne Justy & Martin Cohen-Gonsaud & Mathieu Sicard & Mylène Weill, 2018. "Author Correction: Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    5. Jason M. Berk & Christopher Lim & Judith A. Ronau & Apala Chaudhuri & Hongli Chen & John F. Beckmann & J. Patrick Loria & Yong Xiong & Mark Hochstrasser, 2020. "A deubiquitylase with an unusually high-affinity ubiquitin-binding domain from the scrub typhus pathogen Orientia tsutsugamushi," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    6. Manon Bonneau & Celestine Atyame & Marwa Beji & Fabienne Justy & Martin Cohen-Gonsaud & Mathieu Sicard & Mylène Weill, 2018. "Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cameron J. McNamara & Thomas H. Ant & Tim Harvey-Samuel & Helen White-Cooper & Julien Martinez & Luke Alphey & Steven P. Sinkins, 2024. "Transgenic expression of cif genes from Wolbachia strain wAlbB recapitulates cytoplasmic incompatibility in Aedes aegypti," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susumu Katsuma & Kanako Hirota & Noriko Matsuda-Imai & Takahiro Fukui & Tomohiro Muro & Kohei Nishino & Hidetaka Kosako & Keisuke Shoji & Hideki Takanashi & Takeshi Fujii & Shin-ichi Arimura & Takashi, 2022. "A Wolbachia factor for male killing in lepidopteran insects," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Jasjot Singh & Hadeer Elhabashy & Pathma Muthukottiappan & Markus Stepath & Martin Eisenacher & Oliver Kohlbacher & Volkmar Gieselmann & Dominic Winter, 2022. "Cross-linking of the endolysosomal system reveals potential flotillin structures and cargo," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Olga V. Kochenova & Sirisha Mukkavalli & Malavika Raman & Johannes C. Walter, 2022. "Cooperative assembly of p97 complexes involved in replication termination," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Andy M. Lau & Shaun M. Kandathil & David T. Jones, 2023. "Merizo: a rapid and accurate protein domain segmentation method using invariant point attention," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Xiuqing Lv & Kaixuan Gao & Jia Nie & Xin Zhang & Shuhao Zhang & Yinhang Ren & Xiaoou Sun & Qi Li & Jingrui Huang & Lijuan Liu & Xiaowen Zhang & Weishe Zhang & Xiangyu Liu, 2023. "Structures of human prostaglandin F2α receptor reveal the mechanism of ligand and G protein selectivity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Guizhen Fan & Mariah R. Baker & Lara E. Terry & Vikas Arige & Muyuan Chen & Alexander B. Seryshev & Matthew L. Baker & Steven J. Ludtke & David I. Yule & Irina I. Serysheva, 2022. "Conformational motions and ligand-binding underlying gating and regulation in IP3R channel," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Daniel Flam-Shepherd & Kevin Zhu & Alán Aspuru-Guzik, 2022. "Language models can learn complex molecular distributions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Jianfeng Sun & Xue Li & Xuben Hou & Sujian Cao & Wenjin Cao & Ye Zhang & Jinyang Song & Manfu Wang & Hao Wang & Xiaodong Yan & Zengpeng Li & Robert G. Roeder & Wei Wang, 2022. "Structural basis of human SNAPc recognizing proximal sequence element of snRNA promoter," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Jutta Diessl & Jens Berndtsson & Filomena Broeskamp & Lukas Habernig & Verena Kohler & Carmela Vazquez-Calvo & Arpita Nandy & Carlotta Peselj & Sofia Drobysheva & Ludovic Pelosi & F.-Nora Vögtle & Fab, 2022. "Manganese-driven CoQ deficiency," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29273-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.