IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17353-8.html
   My bibliography  Save this article

Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction

Author

Listed:
  • Joep Rouwhorst

    (University of Amsterdam)

  • Christopher Ness

    (University of Cambridge
    University of Edinburgh)

  • Simeon Stoyanov

    (Unilever R&D Vlaardingen)

  • Alessio Zaccone

    (University of Cambridge
    University of Milan
    University of Cambridge)

  • Peter Schall

    (University of Amsterdam)

Abstract

The dynamical arrest of attractive colloidal particles into out-of-equilibrium structures, known as gelation, is central to biophysics, materials science, nanotechnology, and food and cosmetic applications, but a complete understanding is lacking. In particular, for intermediate particle density and attraction, the structure formation process remains unclear. Here, we show that the gelation of short-range attractive particles is governed by a nonequilibrium percolation process. We combine experiments on critical Casimir colloidal suspensions, numerical simulations, and analytical modeling with a master kinetic equation to show that cluster sizes and correlation lengths diverge with exponents ~1.6 and 0.8, respectively, consistent with percolation theory, while detailed balance in the particle attachment and detachment processes is broken. Cluster masses exhibit power-law distributions with exponents −3/2 and −5/2 before and after percolation, as predicted by solutions to the master kinetic equation. These results revealing a nonequilibrium continuous phase transition unify the structural arrest and yielding into related frameworks.

Suggested Citation

  • Joep Rouwhorst & Christopher Ness & Simeon Stoyanov & Alessio Zaccone & Peter Schall, 2020. "Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17353-8
    DOI: 10.1038/s41467-020-17353-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17353-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17353-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. Hertlein & L. Helden & A. Gambassi & S. Dietrich & C. Bechinger, 2008. "Direct measurement of critical Casimir forces," Nature, Nature, vol. 451(7175), pages 172-175, January.
    2. Van Duc Nguyen & Suzanne Faber & Zhibing Hu & Gerard H. Wegdam & Peter Schall, 2013. "Controlling colloidal phase transitions with critical Casimir forces," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujie Jiang & Ryohei Seto, 2023. "Colloidal gelation with non-sticky particles," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Mohammad Nabizadeh & Safa Jamali, 2021. "Life and death of colloidal bonds control the rate-dependent rheology of gels," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piet J. M. Swinkels & Zhe Gong & Stefano Sacanna & Eva G. Noya & Peter Schall, 2023. "Visualizing defect dynamics by assembling the colloidal graphene lattice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Li Tian & Clemens Bechinger, 2022. "Surface melting of a colloidal glass," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    3. Kanth, Jampa Maruthi Pradeep & Anishetty, Ramesh, 2013. "Hydrophobic force, a Casimir-like effect due to hydrogen-bond fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4804-4823.
    4. Marloes H. Bistervels & Balázs Antalicz & Marko Kamp & Hinco Schoenmaker & Willem L. Noorduin, 2023. "Light-driven nucleation, growth, and patterning of biorelevant crystals using resonant near-infrared laser heating," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Chi Zhang & José Muñetón Díaz & Augustin Muster & Diego R. Abujetas & Luis S. Froufe-Pérez & Frank Scheffold, 2024. "Determining intrinsic potentials and validating optical binding forces between colloidal particles using optical tweezers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Dantchev, Daniel & Vassilev, Vassil M. & Djondjorov, Peter A., 2018. "Analytical results for the Casimir force in a Ginzburg–Landau type model of a film with strongly adsorbing competing walls," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 302-315.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17353-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.