IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09286-8.html
   My bibliography  Save this article

Controllable ion transport by surface-charged graphene oxide membrane

Author

Listed:
  • Mengchen Zhang

    (Nanjing Tech University)

  • Kecheng Guan

    (Nanjing Tech University)

  • Yufan Ji

    (Nanjing Tech University)

  • Gongping Liu

    (Nanjing Tech University)

  • Wanqin Jin

    (Nanjing Tech University)

  • Nanping Xu

    (Nanjing Tech University)

Abstract

Ion transport is crucial for biological systems and membrane-based technology. Atomic-thick two-dimensional materials, especially graphene oxide (GO), have emerged as ideal building blocks for developing synthetic membranes for ion transport. However, the exclusion of small ions in a pressured filtration process remains a challenge for GO membranes. Here we report manipulation of membrane surface charge to control ion transport through GO membranes. The highly charged GO membrane surface repels high-valent co-ions owing to its high interaction energy barrier while concomitantly restraining permeation of electrostatically attracted low-valent counter-ions based on balancing overall solution charge. The deliberately regulated surface-charged GO membranes demonstrate remarkable enhancement of ion rejection with intrinsically high water permeance that exceeds the performance limits of state-of-the-art nanofiltration membranes. This facile and scalable surface charge control approach opens opportunities in selective ion transport for the fields of water transport, biomimetic ion channels and biosensors, ion batteries and energy conversions.

Suggested Citation

  • Mengchen Zhang & Kecheng Guan & Yufan Ji & Gongping Liu & Wanqin Jin & Nanping Xu, 2019. "Controllable ion transport by surface-charged graphene oxide membrane," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09286-8
    DOI: 10.1038/s41467-019-09286-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09286-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09286-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shihao Su & Yifan Zhang & Shengyuan Peng & Linxin Guo & Yong Liu & Engang Fu & Huijun Yao & Jinlong Du & Guanghua Du & Jianming Xue, 2022. "Multifunctional graphene heterogeneous nanochannel with voltage-tunable ion selectivity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Weipeng Xian & Xiuhui Zuo & Changjia Zhu & Qing Guo & Qing-Wei Meng & Xincheng Zhu & Sai Wang & Shengqian Ma & Qi Sun, 2022. "Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Rongming Xu & Yuan Kang & Weiming Zhang & Bingcai Pan & Xiwang Zhang, 2023. "Two-dimensional MXene membranes with biomimetic sub-nanochannels for enhanced cation sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Ce Yang & Haiyan Wang & Jiaxin Bai & Tiancheng He & Huhu Cheng & Tianlei Guang & Houze Yao & Liangti Qu, 2022. "Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Kecheng Guan & Yanan Guo & Zhan Li & Yuandong Jia & Qin Shen & Keizo Nakagawa & Tomohisa Yoshioka & Gongping Liu & Wanqin Jin & Hideto Matsuyama, 2023. "Deformation constraints of graphene oxide nanochannels under reverse osmosis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Di Wei & Feiyao Yang & Zhuoheng Jiang & Zhonglin Wang, 2022. "Flexible iontronics based on 2D nanofluidic material," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Hai Liu & Xinxi Huang & Yang Wang & Baian Kuang & Wanbin Li, 2024. "Nanowire-assisted electrochemical perforation of graphene oxide nanosheets for molecular separation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09286-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.