IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v9y2019i4d10.1038_s41558-019-0426-8.html
   My bibliography  Save this article

Robust abatement pathways to tolerable climate futures require immediate global action

Author

Listed:
  • J. R. Lamontagne

    (Tufts University)

  • P. M. Reed

    (Cornell University)

  • G. Marangoni

    (The Pennsylvania State University
    Politecnico di Milano)

  • K. Keller

    (The Pennsylvania State University
    The Pennsylvania State University)

  • G. G. Garner

    (Rutgers University)

Abstract

Disentangling the relative importance of climate change abatement policies from the human–Earth system (HES) uncertainties that determine their performance is challenging because the two are inexorably linked, and the nature of this linkage is dynamic, interactive and metric specific1. Here, we demonstrate an approach to quantify the individual and joint roles that diverse HES uncertainties and our choices in abatement policy play in determining future climate and economic conditions, as simulated by an improved version of the Dynamic Integrated model of Climate and the Economy2,3. Despite wide-ranging HES uncertainties, the growth rate of global abatement (a societal choice) is the primary driver of long-term warming. It is not a question of whether we can limit warming but whether we choose to do so. Our results elucidate important long-term HES dynamics that are often masked by common time-aggregated metrics. Aggressive near-term abatement will be very costly and do little to impact near-term warming. Conversely, the warming that will be experienced by future generations will mostly be driven by earlier abatement actions. We quantify probabilistic abatement pathways to tolerable climate/economic outcomes4,5, conditional on the climate sensitivity to the atmospheric CO2 concentration. Even under optimistic assumptions about the climate sensitivity, pathways to a tolerable climate/economic future are rapidly narrowing.

Suggested Citation

  • J. R. Lamontagne & P. M. Reed & G. Marangoni & K. Keller & G. G. Garner, 2019. "Robust abatement pathways to tolerable climate futures require immediate global action," Nature Climate Change, Nature, vol. 9(4), pages 290-294, April.
  • Handle: RePEc:nat:natcli:v:9:y:2019:i:4:d:10.1038_s41558-019-0426-8
    DOI: 10.1038/s41558-019-0426-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-019-0426-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-019-0426-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puertas, Rosa & Guaita-Martinez, José M. & Marti, Luisa, 2023. "Analysis of the impact of university policies on society's environmental perception," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    2. Giacomo Marangoni & Jonathan R. Lamontagne & Julianne D. Quinn & Patrick M. Reed & Klaus Keller, 2021. "Adaptive mitigation strategies hedge against extreme climate futures," Climatic Change, Springer, vol. 166(3), pages 1-17, June.
    3. Connor, Jeffery D. & Summers, David & Regan, Courtney & Abbott, Hayley & Van Der Linden, Leon & Frizenschaf, Jacqueline, 2022. "Sensitivity analysis in economic evaluation of payments for water and carbon ecosystem services," Ecosystem Services, Elsevier, vol. 54(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:9:y:2019:i:4:d:10.1038_s41558-019-0426-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.