IDEAS home Printed from
   My bibliography  Save this article

Bargaining Solutions as Social Compromises


  • Andreas Pfingsten


  • Andreas Wagener



A bargaining solution is a social compromise if it is metrically rationalizable, i.e., if it has an optimum (depending on the situation, smallest or largest) distance from some reference point. We explore the workability and the limits of metric rationalization in bargaining theory where compromising is a core issue. We demonstrate that many well-known bargaining solutions are social compromises with respect to reasonable metrics. In the metric approach, bargaining solutions can be grounded in axioms on how society measures differences between utility allocations. Using this approach, we provide an axiomatic characterization for the class of social compromises that are based on p-norms and for the attending bargaining solutions. We further show that bargaining solutions which satisfy Pareto Optimality and Individual Rationality can always be metrically rationalized.

Suggested Citation

  • Andreas Pfingsten & Andreas Wagener, 2003. "Bargaining Solutions as Social Compromises," Theory and Decision, Springer, vol. 55(4), pages 359-389, December.
  • Handle: RePEc:kap:theord:v:55:y:2003:i:4:p:359-389

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Christian Gollier & Harris Schlesinger, 1996. "Arrow's theorem on the optimality of deductibles: A stochastic dominance approach (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 359-363.
    2. Sopher & Narramore, 2000. "Stochastic Choice and Consistency in Decision Making Under Risk: An Experimental Study," Theory and Decision, Springer, vol. 48(4), pages 323-349, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. M. Voorneveld & A. Nouweland & R. McLean, 2011. "Axiomatizations of the Euclidean compromise solution," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(3), pages 427-448, August.
    2. Voorneveld, Mark & van den Nouweland, Anne & McLean, Rich, 2008. "An axiomatization of the Euclidean compromise solution," SSE/EFI Working Paper Series in Economics and Finance 703, Stockholm School of Economics.
    3. Christian Roessler, 2006. "Public Good Menus and Feature Complementarity," Department of Economics - Working Papers Series 962, The University of Melbourne.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:55:y:2003:i:4:p:359-389. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.