IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A Semiparametric Method for Valuing Residential Locations: Application to Automated Valuation

Listed author(s):
  • Clapp, John M

This paper is motivated by automated valuation systems, which would benefit from an ability to estimate spatial variation in location value. It develops theory for the local regression model (LRM), a semiparametric approach to estimating a location value surface. There are two parts to the LRM: (1) an ordinary least square (OLS) model to hold constant for interior square footage, land area, bathrooms, and other structural characteristics; and (2) a non-parametric smoother (local polynomial regression, LPR) which calculates location value as a function of latitude and longitude. Several methods are used to consistently estimate both parts of the model. The LRM was fit to geocoded hedonic sales data for six towns in the suburbs of Boston, MA. The estimates yield substantial, significant and plausible spatial patterns in location values. Using the LRM as an exploratory tool, local peaks and valleys in location value identified by the model are close to points identified by the tax assessor, and they are shown to add to the explanatory power of an OLS model. Out-of-sample MSE shows that the LRM with a first-degree polynomial (local linear smoothing) is somewhat better than polynomials of degree zero or degree two. Future applications might use degree zero (the well-known NW estimator) because this is available in popular commercial software. The optimized LRM reduces MSE from the OLS model by between 5 percent and 11 percent while adding information on statistically significant variations in location value. Copyright 2003 by Kluwer Academic Publishers

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Journal of Real Estate Finance & Economics.

Volume (Year): 27 (2003)
Issue (Month): 3 (November)
Pages: 303-320

in new window

Handle: RePEc:kap:jrefec:v:27:y:2003:i:3:p:303-20
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kap:jrefec:v:27:y:2003:i:3:p:303-20. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Rebekah McClure)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.