IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v7y1994i4p227-44.html
   My bibliography  Save this article

On the Use of Optimization Models for Portfolio Selection: A Review and Some Computational Results

Author

Listed:
  • Pardalos, Panos M
  • Sandstrom, Mattias
  • Zopounidis, Costas

Abstract

Portfolio theory deals with the question of how to allocate resources among several competing alternatives (stocks, bonds), many of which have an unknown outcome. In this paper we provide an overview of different portfolio models with emphasis on the corresponding optimization problems. For the classical Markowitz mean-variance model we present computational results, applying a dual algorithm for constrained optimization. Citation Copyright 1994 by Kluwer Academic Publishers.

Suggested Citation

  • Pardalos, Panos M & Sandstrom, Mattias & Zopounidis, Costas, 1994. "On the Use of Optimization Models for Portfolio Selection: A Review and Some Computational Results," Computational Economics, Springer;Society for Computational Economics, vol. 7(4), pages 227-244.
  • Handle: RePEc:kap:compec:v:7:y:1994:i:4:p:227-44
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hirschberger, Markus & Qi, Yue & Steuer, Ralph E., 2010. "Large-scale MV efficient frontier computation via a procedure of parametric quadratic programming," European Journal of Operational Research, Elsevier, vol. 204(3), pages 581-588, August.
    2. Panagiotis Xidonas & George Mavrotas & John Psarras, 2010. "Equity portfolio construction and selection using multiobjective mathematical programming," Journal of Global Optimization, Springer, vol. 47(2), pages 185-209, June.
    3. Deng, Xiao-Tie & Li, Zhong-Fei & Wang, Shou-Yang, 2005. "A minimax portfolio selection strategy with equilibrium," European Journal of Operational Research, Elsevier, vol. 166(1), pages 278-292, October.
    4. Xi-li Zhang & Wei-Guo Zhang & Wei-jun Xu & Wei-Lin Xiao, 2010. "Possibilistic Approaches to Portfolio Selection Problem with General Transaction Costs and a CLPSO Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 36(3), pages 191-200, October.
    5. X. Cui & X. Zheng & S. Zhu & X. Sun, 2013. "Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems," Journal of Global Optimization, Springer, vol. 56(4), pages 1409-1423, August.
    6. Pankaj Gupta & Mukesh Mehlawat & Garima Mittal, 2012. "Asset portfolio optimization using support vector machines and real-coded genetic algorithm," Journal of Global Optimization, Springer, vol. 53(2), pages 297-315, June.
    7. Ehrgott, Matthias & Klamroth, Kathrin & Schwehm, Christian, 2004. "An MCDM approach to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 155(3), pages 752-770, June.
    8. Darlington, J. & Pantelides, C. C. & Rustem, B. & Tanyi, B. A., 2000. "Decreasing the sensitivity of open-loop optimal solutions in decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 121(2), pages 343-362, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:7:y:1994:i:4:p:227-44. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.