IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v66y2025i1d10.1007_s10614-024-10727-w.html
   My bibliography  Save this article

Portfolio Optimization Under the Uncertain Financial Model

Author

Listed:
  • Jiangong Wu

    (Hunan Applied Technology University)

  • J. F. Gomez-Aguilar

    (Universidad Autónoma del Estado de Morelos)

  • Rahman Taleghani

    (University of Padova)

Abstract

The purpose of this paper is to employ the fractional uncertain differential equation to model stock price and design an strategy to reduce the investment risk based on the optimization model. First, the two-factor fractional Liu uncertain model with the renewal process is presented. Then two algorithms are proposed to identify and separate the jump data and by using the properties of the fractional Liu and the renewal processes, formulas are derived to calibrate the model’s parameters based on the NASDAQ market data. After that, to reduce the unsystematic investment risk, a normalized version of the CCMV optimization model is introduced to the investment portfolio diversification. To improve the performance of the portfolio optimization model, the financial model is applied to predict the future of the stock prices and find their rate of returns and covariance matrix and apply them as the input of the model. Finally, the numerical results show the efficiency of the model and the presented investment strategy.

Suggested Citation

  • Jiangong Wu & J. F. Gomez-Aguilar & Rahman Taleghani, 2025. "Portfolio Optimization Under the Uncertain Financial Model," Computational Economics, Springer;Society for Computational Economics, vol. 66(1), pages 571-592, July.
  • Handle: RePEc:kap:compec:v:66:y:2025:i:1:d:10.1007_s10614-024-10727-w
    DOI: 10.1007/s10614-024-10727-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10727-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10727-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    2. Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Duan Li & Xiaoling Sun & Jun Wang, 2006. "Optimal Lot Solution To Cardinality Constrained Mean–Variance Formulation For Portfolio Selection," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 83-101, January.
    4. Lanruo Dai & Zongfei Fu & Zhiyong Huang, 2017. "Option pricing formulas for uncertain financial market based on the exponential Ornstein–Uhlenbeck model," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 597-604, March.
    5. Farshid Mehrdoust & Ali Reza Najafi, 2018. "Pricing European Options under Fractional Black–Scholes Model with a Weak Payoff Function," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 685-706, August.
    6. Sheng, Yuhong & Yao, Kai & Qin, Zhongfeng, 2020. "Continuity and variation analysis of fractional uncertain processes," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Eric Luxenberg & Philipp Schiele & Stephen Boyd, 2024. "Portfolio Optimization with Cumulative Prospect Theory Utility via Convex Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 3027-3047, November.
    8. Eric Luxenberg & Philipp Schiele & Stephen Boyd, 2022. "Portfolio Optimization with Cumulative Prospect Theory Utility via Convex Optimization," Papers 2209.03461, arXiv.org, revised Jan 2024.
    9. Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
    10. Abdelhameed M. Nagy & Abdellatif Ben Makhlouf & Abdulaziz Alsenafi & Fares Alazemi, 2021. "Combination Synchronization of Fractional Systems Involving the Caputo–Hadamard Derivative," Mathematics, MDPI, vol. 9(21), pages 1-14, November.
    11. Jumarie, Guy, 2007. "Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferentiable functions," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 969-987.
    12. Yang, Xiangfeng & Liu, Yuhan & Park, Gyei-Kark, 2020. "Parameter estimation of uncertain differential equation with application to financial market," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Kai Yao & Baoding Liu, 2020. "Parameter estimation in uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 1-12, March.
    14. Xu, Qinqin & Zhu, Yuanguo, 2023. "Reliability analysis of uncertain random systems based on uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    15. Gao, Yin & Gao, Jinwu & Yang, Xiangfeng, 2022. "Parameter estimation in uncertain delay differential equations via the method of moments," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    16. Shi, Gang & Gao, Jinwu, 2021. "European Option Pricing Problems with Fractional Uncertain Processes," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    2. Xin, Yue & Zhang, Yi & Noorani, Idin & Mehrdoust, Farshid & Gao, Jinwu, 2025. "Estimation of parameters and valuation of options written on multiple assets described by uncertain fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 487(C).
    3. Shen, Jiayu & Shi, Jianxin & Gao, Lingceng & Zhang, Qiang & Zhu, Kai, 2023. "Uncertain green product supply chain with government intervention," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 136-156.
    4. Pan, Zeyu & Gao, Yin & Yuan, Lin, 2021. "Bermudan options pricing formulas in uncertain financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Liu, Z. & Yang, Y., 2021. "Selection of uncertain differential equations using cross validation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Wang, Weiwei & Ralescu, Dan A., 2021. "Valuation of lookback option under uncertain volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    7. Xiangfeng Yang & Haoxuan Li, 2025. "Uncertain finance: a systematic review of recent advances," Fuzzy Optimization and Decision Making, Springer, vol. 24(3), pages 531-561, September.
    8. Shi, Gang & Gao, Jinwu, 2021. "European Option Pricing Problems with Fractional Uncertain Processes," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    9. Li, Bo & Tao, Ziyu & Shu, Yadong, 2025. "Uncertain Bass diffusion model and modeling the purchase volume of private cargo vehicles in China," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
    10. Liu, Hanjie & Zhu, Yuanguo, 2024. "Carbon option pricing based on uncertain fractional differential equation: A binomial tree approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 13-28.
    11. Jie, Ke-Wei & Liu, San-Yang & Sun, Xiao-Jun & Xu, Yun-Cheng, 2023. "A dynamic ripple-spreading algorithm for solving mean–variance of shortest path model in uncertain random networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    12. Chen, Dan & Liu, Yang, 2023. "Uncertain Gordon-Schaefer model driven by Liu process," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    13. Jin, Ting & Yang, Xiangfeng, 2021. "Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 203-221.
    14. Zhi-Long Dong & Fengmin Xu & Yu-Hong Dai, 2020. "Fast algorithms for sparse portfolio selection considering industries and investment styles," Journal of Global Optimization, Springer, vol. 78(4), pages 763-789, December.
    15. Zhang, Guidong & Sheng, Yuhong, 2022. "Estimating time-varying parameters in uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    16. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    17. Chen, Xin & Zhu, Yuanguo & Sheng, Linxue, 2021. "Optimal control for uncertain stochastic dynamic systems with jump and application to an advertising model," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    18. Tang, Han & Yang, Xiangfeng, 2022. "Moment estimation in uncertain differential equations based on the Milstein scheme," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    19. Waichon Lio & Baoding Liu, 2021. "Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 177-188, June.
    20. Waichon Lio & Rui Kang, 2023. "Bayesian rule in the framework of uncertainty theory," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 337-358, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:66:y:2025:i:1:d:10.1007_s10614-024-10727-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.