IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v29y2007i3p421-421.html
   My bibliography  Save this article

Individual and Social Learning

Author

Listed:
  • Nobuyuki Hanaki

    ()

Abstract

We use adaptive models to understand the dynamics that lead to efficient and fair outcomes in a repeated Battle of the Sexes game. Human subjects appear to easily recognize the possibility of a coordinated alternation of actions as a mean to generate an efficient and fair outcome. Yet such typical learning models as Fictitious Play and Reinforcement Learning have found it hard to replicate this particular result. We develop a model that not only uses individual learning but also the “social learning” that operates through evolutionary selection. We find that the efficient and fair outcome emerges relatively quickly in our model. Copyright Springer Science+Business Media, Inc. 2005
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Nobuyuki Hanaki, 2007. "Individual and Social Learning," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 421-421, May.
  • Handle: RePEc:kap:compec:v:29:y:2007:i:3:p:421-421 DOI: 10.1007/s10614-006-9055-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-006-9055-1
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gary Charness & Matthew Rabin, 2002. "Understanding Social Preferences with Simple Tests," The Quarterly Journal of Economics, Oxford University Press, pages 817-869.
    2. Hanaki, Nobuyuki & Sethi, Rajiv & Erev, Ido & Peterhansl, Alexander, 2005. "Learning strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 56(4), pages 523-542, April.
    3. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    4. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    5. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, January.
    6. Mookherjee, Dilip & Sopher, Barry, 1997. "Learning and Decision Costs in Experimental Constant Sum Games," Games and Economic Behavior, Elsevier, pages 97-132.
    7. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    8. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    9. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, January.
    10. Miller, John H., 1996. "The coevolution of automata in the repeated Prisoner's Dilemma," Journal of Economic Behavior & Organization, Elsevier, vol. 29(1), pages 87-112, January.
    11. Rabin, Matthew, 1993. "Incorporating Fairness into Game Theory and Economics," American Economic Review, American Economic Association, vol. 83(5), pages 1281-1302, December.
    12. Arifovic, Jasmina & McKelvey, Richard D. & Pevnitskaya, Svetlana, 2006. "An initial implementation of the Turing tournament to learning in repeated two-person games," Games and Economic Behavior, Elsevier, vol. 57(1), pages 93-122, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liangjie Zhao & Wenqi Duan, 2014. "Simulating the Evolution of Market Shares: The Effects of Customer Learning and Local Network Externalities," Computational Economics, Springer;Society for Computational Economics, vol. 43(1), pages 53-70, January.
    2. Cynthia Chen & Jason Chen, 2009. "What is responsible for the response lag of a significant change in discretionary time use: the built environment, family and social obligations, temporal constraints, or a psychological delay factor?," Transportation, Springer, vol. 36(1), pages 27-46, January.
    3. Shu-Heng Chan & Shu G. Wang, 2010. "Emergent Complexity in Agent-Based Computational Economics," ASSRU Discussion Papers 1017, ASSRU - Algorithmic Social Science Research Unit.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:29:y:2007:i:3:p:421-421. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.