IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v18y2001i3p287-316.html
   My bibliography  Save this article

Digital Portfolio Theory

Author

Listed:
  • Jones, C Kenneth

Abstract

The Modern Portfolio Theory of Markowitz maximized portfolio expected return subject to holding total portfolio variance below a selected level. Digital Portfolio Theory is an extension of Modern Portfolio Theory, with the added dimension of memory. Digital Portfolio Theory decomposes the portfolio variance into independent components using the signal processing decomposition of variance. The risk or variance of each security's return process is represented by multiple periodic components. These periodic variance components are further decomposed into systematic and unsystematic parts relative to a reference index. The Digital Portfolio Theory model maximizes portfolio expected return subject to a set of linear constraints that control systematic, unsystematic, calendar and non-calendar variance. The paper formulates a single period, digital signal processing, portfolio selection model using cross-covariance constraints to describe covariance and autocorrelation characteristics. Expected calendar effects can be optimally arbitraged by controlling the memory or autocorrelation characteristics of the efficient portfolios. The Digital Portfolio Theory optimization model is compared to the Modern Portfolio Theory model and is used to find efficient portfolios with zero calendar risk for selected periods. Copyright 2001 by Kluwer Academic Publishers

Suggested Citation

  • Jones, C Kenneth, 2001. "Digital Portfolio Theory," Computational Economics, Springer;Society for Computational Economics, vol. 18(3), pages 287-316, December.
  • Handle: RePEc:kap:compec:v:18:y:2001:i:3:p:287-316
    as

    Download full text from publisher

    File URL: http://journals.kluweronline.com/issn/0927-7099/contents
    Download Restriction: Access to the full text of the articles in this series is restricted.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. Quek & K. C. Yow & Philip Y. K. Cheng & C. C. Tan, 2009. "Investment portfolio balancing: application of a generic self‐organizing fuzzy neural network (GenSoFNN)," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(1‐2), pages 147-164, January.
    2. Erdemlioglu, Deniz & Joliet, Robert, 2019. "Long-term asset allocation, risk tolerance and market sentiment," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 1-19.
    3. Christos Alexakis & Michael Dowling & Konstantinos Eleftheriou & Michael Polemis, 2021. "Textual Machine Learning: An Application to Computational Economics Research," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 369-385, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:18:y:2001:i:3:p:287-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.