IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03182910.html
   My bibliography  Save this paper

Textual Machine Learning: An Application to Computational Economics Research

Author

Listed:
  • Christos Alexakis

    (Rennes School of Business)

  • Michael Dowling

    (Rennes School of Business)

  • Konstantinos Eleftheriou

    (University of Piraeus)

  • Michael Polemis

    (University of Piraeus)

Abstract

We demonstrate the benefit to economics of machine learning approaches for textual analysis. Our use case is a machine learning based structuring of research on computational economics based on 1160 articles published in the Computational Economics journal from 1993 to 2019. Our Latent Dirichlet Allocation approach, popular in the computer sciences, use a probabilistic approach to identify shared topics across a body of documents. This combines natural language processing of article content with probabilistic learning of the latent (hidden) topics that link groups of articles. We show that this body of research can be well-described by 18 overall topics and provide a structure for computational economists to adopt this approach in other avenues.

Suggested Citation

  • Christos Alexakis & Michael Dowling & Konstantinos Eleftheriou & Michael Polemis, 2021. "Textual Machine Learning: An Application to Computational Economics Research," Post-Print hal-03182910, HAL.
  • Handle: RePEc:hal:journl:hal-03182910
    DOI: 10.1007/s10614-020-10077-3
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-03182910
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Panayotis G. Michaelides & Efthymios G. Tsionas & Angelos T. Vouldis & Konstantinos N. Konstantakis & Panagiotis Patrinos, 2018. "A Semi-Parametric Non-linear Neural Network Filter: Theory and Empirical Evidence," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 637-675, March.
    2. Tao Ding & Zhixiang Zhou & Qianzhi Dai & Liang Liang, 2020. "Analysis of China’s Regional Economic Environmental Performance: A Non-radial Multi-objective DEA Approach," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1209-1231, April.
    3. McFadzean, David & Tesfatsion, Leigh, 1999. "A C++ Platform for the Evolution of Trade Networks," Computational Economics, Springer;Society for Computational Economics, vol. 14(1-2), pages 109-134, October.
    4. Julio B. Clempner & Alexander S. Poznyak, 2019. "Solving Transfer Pricing Involving Collaborative and Non-cooperative Equilibria in Nash and Stackelberg Games: Centralized–Decentralized Decision Making," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 477-505, August.
    5. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    6. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    7. James Hartley & James W. Pennebaker & Claire Fox, 2003. "Abstracts, introductions and discussions: How far do they differ in style?," Scientometrics, Springer;Akadémiai Kiadó, vol. 57(3), pages 389-398, July.
    8. Jae Woo Lee & Ashadun Nobi, 2018. "State and Network Structures of Stock Markets Around the Global Financial Crisis," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 195-210, February.
    9. Dominique Dufour & Pierre Teller & Philippe Luu, 2014. "A Neo-institutionalist Model of the Diffusion of IFRS Accounting Standards," Computational Economics, Springer;Society for Computational Economics, vol. 44(1), pages 27-44, June.
    10. Christopher Boyer & B. Brorsen, 2014. "Implications of a Reserve Price in an Agent-Based Common-Value Auction," Computational Economics, Springer;Society for Computational Economics, vol. 43(1), pages 33-51, January.
    11. Alessandra Iacobucci & A. Noullez, 2005. "A Frequency Selective Filter for Short-Length Time Series," Post-Print hal-02477702, HAL.
    12. Jones, C Kenneth, 2001. "Digital Portfolio Theory," Computational Economics, Springer;Society for Computational Economics, vol. 18(3), pages 287-316, December.
    13. Chen, Shu-Heng, 2012. "Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 1-25.
    14. Periklis Gogas & Theophilos Papadimitriou & Maria Matthaiou & Efthymia Chrysanthidou, 2015. "Yield Curve and Recession Forecasting in a Machine Learning Framework," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 635-645, April.
    15. Aykut Ekinci & Halil İbrahim Erdal, 2017. "Forecasting Bank Failure: Base Learners, Ensembles and Hybrid Ensembles," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 677-686, April.
    16. Arifovic, Jasmina & Eaton, Curtis, 1995. "Coordination via Genetic Learning," Computational Economics, Springer;Society for Computational Economics, vol. 8(3), pages 181-203, August.
    17. Anke Piepenbrink & Elkin Nurmammadov, 2015. "Topics in the literature of transition economies and emerging markets," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2107-2130, March.
    18. Eduardo Acosta-González & Fernando Fernández-Rodríguez & Hicham Ganga, 2019. "Predicting Corporate Financial Failure Using Macroeconomic Variables and Accounting Data," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 227-257, January.
    19. Rajiv Sethi & Jennifer Wortman Vaughan, 2016. "Belief Aggregation with Automated Market Makers," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 155-178, June.
    20. Paolo Postiglione & M. Andreano & Roberto Benedetti, 2013. "Using Constrained Optimization for the Identification of Convergence Clubs," Computational Economics, Springer;Society for Computational Economics, vol. 42(2), pages 151-174, August.
    21. Hui Qu & Xindan Li, 2014. "Building Technical Trading System with Genetic Programming: A New Method to Test the Efficiency of Chinese Stock Markets," Computational Economics, Springer;Society for Computational Economics, vol. 43(3), pages 301-311, March.
    22. Adeola Oyenubi, 2019. "Diversification Measures and the Optimal Number of Stocks in a Portfolio: An Information Theoretic Explanation," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1443-1471, December.
    23. Michael Dowling & Helmi Hammami & Dima Tawil & Ousayna Zreik, 2021. "Writing Energy Economics Research for Impact," Post-Print hal-03159699, HAL.
    24. George Halkos & Kyriaki Tsilika, 2015. "A Dynamic Interface for Trade Pattern Formation in Multi-regional Multi-sectoral Input-output Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 46(4), pages 671-681, December.
    25. Xiao Ma & Feiran Wang & Jiandong Chen & Yang Zhang, 2018. "The Income Gap Between Urban and Rural Residents in China: Since 1978," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1153-1174, December.
    26. Dominique Dufour & Pierre Teller & Philippe Luu, 2014. "A neo-institutionalist model of the diffusion of IFRS accounting standards," Post-Print hal-00719046, HAL.
    27. Olivier Goudet & Jean-Daniel Kant & Gérard Ballot, 2017. "WorkSim: A Calibrated Agent-Based Model of the Labor Market Accounting for Workers’ Stocks and Gross Flows," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 21-68, June.
    28. Bangzhu Zhu & Shujiao Ma & Rui Xie & Julien Chevallier & Yi-Ming Wei, 2018. "Erratum to: Hilbert Spectra and Empirical Mode Decomposition: A Multiscale Event Analysis Method to Detect the Impact of Economic Crises on the European Carbon Market," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 123-123, June.
    29. Ben Vermeulen & Andreas Pyka, 2018. "The Role of Network Topology and the Spatial Distribution and Structure of Knowledge in Regional Innovation Policy: A Calibrated Agent-Based Model Study," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 773-808, October.
    30. Dominique Dufour & Pierre Teller & Philippe Luu, 2014. "A Neo-institutionalist Model of the Diffusion of IFRS Accounting Standards," Post-Print hal-01462869, HAL.
    31. Alessandra Iacobucci & Alain Noullez, 2005. "A Frequency Selective Filter for Short-Length Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 75-102, February.
    32. Fabio S. Dias & Gareth W. Peters, 2020. "A Non-parametric Test and Predictive Model for Signed Path Dependence," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 461-498, August.
    33. King, Robert G & Plosser, Charles I & Rebelo, Sergio T, 2002. "Production, Growth and Business Cycles: Technical Appendix," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 87-116, October.
    34. Weiss, Martin & Newman, Alexandra M., 2011. "A guide to writing articles in energy science," Applied Energy, Elsevier, vol. 88(11), pages 3941-3948.
    35. Clara Galliani & Stefano Zedda, 2015. "Will the Bail-in Break the Vicious Circle Between Banks and their Sovereign?," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 597-614, April.
    36. Manoj Atolia, 2019. "Trade Costs and Endogenous Nontradability in a Model with Sectoral and Firm-Level Heterogeneity," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 709-742, February.
    37. Bangzhu Zhu & Shujiao Ma & Rui Xie & Julien Chevallier & Yi-Ming Wei, 2018. "Hilbert Spectra and Empirical Mode Decomposition: A Multiscale Event Analysis Method to Detect the Impact of Economic Crises on the European Carbon Market," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 105-121, June.
    38. Yong He & Siwei Gao & Nuo Liao, 2016. "An Intelligent Computing Approach to Evaluating the Contribution Rate of Talent on Economic Growth," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 399-423, October.
    39. Jae Woo Lee & Ashadun Nobi, 2018. "State and Network Structures of Stock Markets around the Global Financial Crisis," Papers 1806.04363, arXiv.org.
    40. Allen H. Huang & Reuven Lehavy & Amy Y. Zang & Rong Zheng, 2018. "Analyst Information Discovery and Interpretation Roles: A Topic Modeling Approach," Management Science, INFORMS, vol. 64(6), pages 2833-2855, June.
    41. Paola Arce & Jonathan Antognini & Werner Kristjanpoller & Luis Salinas, 2019. "Fast and Adaptive Cointegration Based Model for Forecasting High Frequency Financial Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 99-112, June.
    42. George Tzagkarakis & Juliana Caicedo-Llano & Thomas Dionysopoulos, 2016. "Time-Frequency Adapted Market Integration Measure Based on Hough Transformed Multiscale Decompositions," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Zhiliang & An, Haizhong & Liu, Sen & Li, Zhengyang & Yuan, Meng, 2020. "Research on the time-varying network structure evolution of the stock indices of the BRICS countries based on fluctuation correlation," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 63-74.
    2. Qiu, Lu & Yang, Huijie, 2020. "Transfer entropy calculation for short time sequences with application to stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    3. Zhu, Bangzhu & Huang, Liqing & Yuan, Lili & Ye, Shunxin & Wang, Ping, 2020. "Exploring the risk spillover effects between carbon market and electricity market: A bidimensional empirical mode decomposition based conditional value at risk approach," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 163-175.
    4. Pasch, Sandra & Dany-Knedlik, Geraldine, 2020. "On the cyclicity of the income distribution," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224654, Verein für Socialpolitik / German Economic Association.
    5. Richard Ashley & Randal Verbrugge, 2015. "Persistence Dependence in Empirical Relations: The Velocity of Money," Working Papers (Old Series) 1530, Federal Reserve Bank of Cleveland.
    6. Bilal Ahmed Memon & Rabia Tahir, 2021. "Examining Network Structures and Dynamics of World Energy Companies in Stock Markets: A Complex Network Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 329-344.
    7. Kumar, Sushil & Kumar, Sunil & Kumar, Pawan, 2020. "Diffusion entropy analysis and random matrix analysis of the Indian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    8. Hongxing Yao & Yanyu Lu & Bilal Ahmed Memon, 2019. "Impact of US-China Trade War on the Network Topology Structure of Chinese Stock Market," Journal of Asian Business Strategy, Asian Economic and Social Society, vol. 9(2), pages 235-250, December.
    9. Hosseini, Seyed Soheil & Wormald, Nick & Tian, Tianhai, 2021. "A Weight-based Information Filtration Algorithm for Stock-correlation Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    10. Zhang, Yaozhong & Wu, Junfeng & Zhang, Chao, 2021. "Risk transfer between stock and open-ended equity fund markets in China based on a multi-layer network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    11. Miriam Koning & Gerard Mertens & Peter Roosenboom, 2018. "Drivers of institutional change around the world: The case of IFRS," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 49(3), pages 249-271, April.
    12. Bashir Muhammad & Sher Khan, 2021. "Understanding the relationship between natural resources, renewable energy consumption, economic factors, globalization and CO2 emissions in developed and developing countries," Natural Resources Forum, Blackwell Publishing, vol. 45(2), pages 138-156, May.
    13. George E. Halkos & Kyriaki D. Tsilika, 2018. "A New Vision of Classical Multi-regional Input–Output Models," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 571-594, March.
    14. Halkos, George & Tsilika, Kyriaki, 2016. "Assessing classical input output structures with trade networks: A graph theory approach," MPRA Paper 72511, University Library of Munich, Germany.
    15. Hans A. Holter & Dirk Krueger & Serhiy Stepanchuk, 2019. "How do tax progressivity and household heterogeneity affect Laffer curves?," Quantitative Economics, Econometric Society, vol. 10(4), pages 1317-1356, November.
    16. Leeper, Eric M. & Yang, Shu-Chun Susan, 2008. "Dynamic scoring: Alternative financing schemes," Journal of Public Economics, Elsevier, vol. 92(1-2), pages 159-182, February.
    17. Tesfatsion, Leigh, 2001. "Structure, behavior, and market power in an evolutionary labor market with adaptive search," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 419-457, March.
    18. Gomme, Paul & Klein, Paul, 2011. "Second-order approximation of dynamic models without the use of tensors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 604-615, April.
    19. Boileau, Martin & Normandin, Michel, 2008. "Closing international real business cycle models with restricted financial markets," Journal of International Money and Finance, Elsevier, vol. 27(5), pages 733-756, September.
    20. Boppart, Timo & Krusell, Per & Mitman, Kurt, 2018. "Exploiting MIT shocks in heterogeneous-agent economies: the impulse response as a numerical derivative," Journal of Economic Dynamics and Control, Elsevier, vol. 89(C), pages 68-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03182910. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.