IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v062i05.html
   My bibliography  Save this article

c060: Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models

Author

Listed:
  • Sill, Martin
  • Hielscher, Thomas
  • Becker, Natalia
  • Zucknick, Manuela

Abstract

We have developed the R package c060 with the aim of improving R software func- tionality for high-dimensional risk prediction modeling, e.g., for prognostic modeling of survival data using high-throughput genomic data. Penalized regression models provide a statistically appealing way of building risk prediction models from high-dimensional data. The popular CRAN package glmnet implements an efficient algorithm for fitting penalized Cox and generalized linear models. However, in practical applications the data analysis will typically not stop at the point where the model has been fitted. One is for example often interested in the stability of selected features and in assessing the prediction performance of a model and we provide functions to deal with both of these tasks. Our R functions are computationally efficient and offer the possibility of speeding up computing time through parallel computing. Another feature which can drastically reduce computing time is an efficient interval-search algorithm, which we have implemented for selecting the optimal parameter combination for elastic net penalties. These functions have been useful in our daily work at the Biostatistics department (C060) of the German Cancer Research Center where prognostic modeling of patient survival data is of particular interest. Although we focus on a survival data application of penalized Cox models in this article, the functions in our R package are in general applicable to all types of regression models implemented in the glmnet package, with the exception of prediction error curves, which are specific to time-to-event data.

Suggested Citation

  • Sill, Martin & Hielscher, Thomas & Becker, Natalia & Zucknick, Manuela, 2014. "c060: Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i05).
  • Handle: RePEc:jss:jstsof:v:062:i05
    DOI: http://hdl.handle.net/10.18637/jss.v062.i05
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v062i05/v62i05.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v062i05/c060_0.2-4.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v062i05/v62i05.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v062.i05?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mogensen, Ulla B. & Ishwaran, Hemant & Gerds, Thomas A., 2012. "Evaluating Random Forests for Survival Analysis Using Prediction Error Curves," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i11).
    2. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    3. Binder Harald & Schumacher Martin, 2008. "Adapting Prediction Error Estimates for Biased Complexity Selection in High-Dimensional Bootstrap Samples," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-28, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi Zhao & Manuela Zucknick, 2020. "Structured penalized regression for drug sensitivity prediction," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 525-545, June.
    2. Mohammad Arashi & Mina Norouzirad & Mahdi Roozbeh & Naushad Mamode Khan, 2021. "A High-Dimensional Counterpart for the Ridge Estimator in Multicollinear Situations," Mathematics, MDPI, vol. 9(23), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lore Zumeta-Olaskoaga & Maximilian Weigert & Jon Larruskain & Eder Bikandi & Igor Setuain & Josean Lekue & Helmut Küchenhoff & Dae-Jin Lee, 2023. "Prediction of sports injuries in football: a recurrent time-to-event approach using regularized Cox models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 101-126, March.
    2. Zhengnan Huang & Hongjiu Zhang & Jonathan Boss & Stephen A Goutman & Bhramar Mukherjee & Ivo D Dinov & Yuanfang Guan & for the Pooled Resource Open-Access ALS Clinical Trials Consortium, 2017. "Complete hazard ranking to analyze right-censored data: An ALS survival study," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-21, December.
    3. Julia Gilhodes & Florence Dalenc & Jocelyn Gal & Christophe Zemmour & Eve Leconte & Jean Marie Boher & Thomas Filleron, 2020. "Comparison of Variable Selection Methods for Time-to-Event Data in High-Dimensional Settings," Post-Print hal-02934793, HAL.
    4. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    5. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    6. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    7. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    8. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    9. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    10. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    11. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    12. Perrot-Dockès Marie & Lévy-Leduc Céline & Chiquet Julien & Sansonnet Laure & Brégère Margaux & Étienne Marie-Pierre & Robin Stéphane & Genta-Jouve Grégory, 2018. "A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-14, October.
    13. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    14. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    15. Sung Jae Jun & Sokbae Lee, 2020. "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," Papers 2004.08318, arXiv.org, revised Oct 2023.
    16. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    17. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    19. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    20. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:062:i05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.