IDEAS home Printed from
   My bibliography  Save this article

"S-shaped" Economic Dynamics. The Logistic and Gompertz curves generalized


  • Gloria Jarne, Julio Sánchez-Chóliz, Francisco Fatás-Villafranca


Over the years "S-shaped" evolutions have regularly been incorporated in economic models, and indeed in those of other sciences, by way of the logistic or Gompertz equations. However, both equations have noteworthy shortcomings when fitting some empirical features of economic growth: the logistic equation is characterized by strong symmetries, whilst the growth rate is decreasing in the case of both equations. In this paper, we have set out to overcome these limitations by defining a family of unimodal differential equations which includes the logistic and Gompertz equations and covers practically the whole spectrum of sigmoid curves. We have identified three sub-families of these differential equations, all offering good mathematical expressions. Using these, it is possible to obtain an acceptable fit for any S-shaped curve. The results are applied to various economic series, successfully replicating certain well-known economic phenomena. Mathematical analysis: Unimodal differential equations. Empirical analysis: Non-linear adjustment to the USA Capacity Index time series. We have defined a family of unimodal differential equations covering practically the whole spectrum of "S-shaped" curves. We have selected three sub-families mathematically manageable and which depend on five easily interpretable parameters. It is shown that any one of them may adequately replicate empirically relevant S-shaped phenomena (overcoming certain limitations of the logistic and Gompertz curves). In order to assess the power of these families to replicate real economic events we have calculate the fit with the USA Capacity Index for Total Industry (1967/02-2003/01) and the US Capacity Index series for Durables, Manufacturing, Computers and Primary processing. Then, we have drawn conclusions on capital accumulation and investment patterns in the period that would appear to be in line with recent historical facts in the US economy.

Suggested Citation

  • Gloria Jarne, Julio Sánchez-Chóliz, Francisco Fatás-Villafranca, . ""S-shaped" Economic Dynamics. The Logistic and Gompertz curves generalized," The Electronic Journal of Evolutionary Modeling and Economic Dynamics, IFReDE - Université Montesquieu Bordeaux IV.
  • Handle: RePEc:jem:ejemed:1048

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    S-shaped curves; Logistic equation; Gompertz equation; Economic growth;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O39 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Other


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jem:ejemed:1048. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.