IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2010-4-2.html
   My bibliography  Save this article

Diffusion of Competing Innovations: The Effects of Network Structure on the Provision of Healthcare

Author

Abstract

Medical innovations, in the form of new medication or other clinical practices, evolve and spread through health care systems, impacting on the quality and standards of health care provision, which is demonstrably heterogeneous by geography. Our aim is to investigate the potential for the diffusion of innovation to influence health inequality and overall levels of recommended care. We extend existing diffusion of innovation models to produce agent-based simulations that mimic population-wide adoption of new practices by doctors within a network of influence. Using a computational model of network construction in lieu of empirical data about a network, we simulate the diffusion of competing innovations as they enter and proliferate through a state system comprising 24 geo-political regions, 216 facilities and over 77,000 individuals. Results show that stronger clustering within hospitals or geo-political regions is associated with slower adoption amongst smaller and rural facilities. Results of repeated simulation show how the nature of uptake and competition can contribute to low average levels of recommended care within a system that relies on diffusive adoption. We conclude that an increased disparity in adoption rates is associated with high levels of clustering in the network, and the social phenomena of competitive diffusion of innovation potentially contributes to low levels of recommended care.

Suggested Citation

  • Adam G. Dunn & Blanca Gallego, 2010. "Diffusion of Competing Innovations: The Effects of Network Structure on the Provision of Healthcare," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 13(4), pages 1-8.
  • Handle: RePEc:jas:jasssj:2010-4-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/13/4/8/8.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Secchi & Raffaello Seri, 2017. "Controlling for false negatives in agent-based models: a review of power analysis in organizational research," Computational and Mathematical Organization Theory, Springer, vol. 23(1), pages 94-121, March.
    2. Karakaya, Emrah, 2016. "Finite Element Method for forecasting the diffusion of photovoltaic systems: Why and how?," Applied Energy, Elsevier, vol. 163(C), pages 464-475.
    3. Hossein Sabzian & Mohammad Ali Shafia & Mehdi Ghazanfari & Ali Bonyadi Naeini, 2020. "Modeling the Adoption and Diffusion of Mobile Telecommunications Technologies in Iran: A Computational Approach Based on Agent-Based Modeling and Social Network Theory," Sustainability, MDPI, vol. 12(7), pages 1-36, April.
    4. Karakaya, Emrah, 2014. "Finite Element Model of the Innovation Diffusion: An Application to Photovoltaic Systems," INDEK Working Paper Series 2014/6, Royal Institute of Technology, Department of Industrial Economics and Management.
    5. Ivan D. Breslavsky, 2017. "Effect of Intellectual Property Policy on the Speed of Technological Advancement," Papers 1706.04518, arXiv.org.
    6. Stummer, Christian & Kiesling, Elmar & Günther, Markus & Vetschera, Rudolf, 2015. "Innovation diffusion of repeat purchase products in a competitive market: An agent-based simulation approach," European Journal of Operational Research, Elsevier, vol. 245(1), pages 157-167.
    7. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2010-4-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.