IDEAS home Printed from
   My bibliography  Save this article

A Latent Class Poisson Regression Model for Heterogeneous Count Data


  • Wedel, M, et al


In this paper an approach is developed that accommodates heterogeneity in Poisson regression models for count data. The model developed assumes that heterogeneity arises from a distribution of both the intercept and the coefficients of the explanatory variables. We assume that the mixing distribution is discrete, resulting in a finite mixture model formulation. An EM algorithm for estimation is described, and the algorithm is applied to data on customer purchases of books offered through direct mail. Our model is compared empirically to a number of other approaches that deal with heterogeneity in Poisson regression models. Coauthors are W. S. Desarbo, J. R. Bult, and V. Ramaswamy. Copyright 1993 by John Wiley & Sons, Ltd.

Suggested Citation

  • Wedel, M, et al, 1993. "A Latent Class Poisson Regression Model for Heterogeneous Count Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(4), pages 397-411, Oct.-Dec..
  • Handle: RePEc:jae:japmet:v:8:y:1993:i:4:p:397-411

    Download full text from publisher

    File URL:
    File Function: full text
    Download Restriction: Access to full text is restricted to JSTOR subscribers. See for details.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:8:y:1993:i:4:p:397-411. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.