IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v47y2013i1p38-52.html
   My bibliography  Save this article

New Lower Bounds and Exact Method for the m -PVRP

Author

Listed:
  • Sandra Ulrich Ngueveu

    (CNRS, LAAS, F-31400 Toulouse, France; and Univerité de Toulouse, INP, LAAS, F-31400 Toulouse, France)

  • Christian Prins

    (ICD-LOSI (UMR 6279), Université de Technologie de Troyes, 10010 Troyes Cedex, France)

  • Roberto Wolfler Calvo

    (LIPN (UMR 7030), Université de Paris-Nord, 93430 Villetaneuse, France)

Abstract

This paper presents new lower bounding procedures and an exact method for the m -peripatetic vehicle routing problem ( m -PVRP) based on polyhedral and column generation approaches. The branch-and-cut algorithms use three types of valid cuts on the edge-based formulation. The column-generation-based lower bounding procedure is applied on the dual set partitioning formulation and is composed of dual heuristics that estimate good dual variable values and therefore high lower bounds. Computational results on instances from the literature show that these new lower bounds reach on average 97.5% to 99% of the best known upper bounds and optimality is proven for a third of the instances.

Suggested Citation

  • Sandra Ulrich Ngueveu & Christian Prins & Roberto Wolfler Calvo, 2013. "New Lower Bounds and Exact Method for the m -PVRP," Transportation Science, INFORMS, vol. 47(1), pages 38-52, February.
  • Handle: RePEc:inm:ortrsc:v:47:y:2013:i:1:p:38-52
    DOI: 10.1287/trsc.1120.0421
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1120.0421
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1120.0421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gouveia, Luis, 1995. "A result on projection for the vehicle routing ptoblem," European Journal of Operational Research, Elsevier, vol. 85(3), pages 610-624, September.
    2. Araque, J. & Hall, L. & Magnanti, T., 1990. "Capacitated trees, capacitated routing, and associated polyhedra," LIDAM Discussion Papers CORE 1990061, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Araque, J., 1990. "Lots of combs of different sizes for vehicle routing," LIDAM Discussion Papers CORE 1990074, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. A N Letchford & J Lysgaard & R W Eglese, 2007. "A branch-and-cut algorithm for the capacitated open vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1642-1651, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Afonso Santos & Geraldo Robson Mateus & Alexandre Salles da Cunha, 2015. "A Branch-and-Cut-and-Price Algorithm for the Two-Echelon Capacitated Vehicle Routing Problem," Transportation Science, INFORMS, vol. 49(2), pages 355-368, May.
    2. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    3. Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2018. "Alternative formulations and improved bounds for the multi-depot fleet size and mix vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 125-157, January.
    4. Manuel Iori & Juan-José Salazar-González & Daniele Vigo, 2007. "An Exact Approach for the Vehicle Routing Problem with Two-Dimensional Loading Constraints," Transportation Science, INFORMS, vol. 41(2), pages 253-264, May.
    5. Gouveia, Luis, 1995. "A result on projection for the vehicle routing ptoblem," European Journal of Operational Research, Elsevier, vol. 85(3), pages 610-624, September.
    6. Daniel Negrotto & Irene Loiseau, 2021. "A Branch & Cut algorithm for the prize-collecting capacitated location routing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 34-57, April.
    7. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Discussion Paper 1995-57, Tilburg University, Center for Economic Research.
    8. Aardal, K. & van Hoesel, C.P.M., 1995. "Polyhedral techniques in combinatorial optimization," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    9. Gizem Ozbaygin & Oya Karasan & Hande Yaman, 2018. "New exact solution approaches for the split delivery vehicle routing problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 85-115, March.
    10. Roberto Baldacci & Paolo Toth & Daniele Vigo, 2010. "Exact algorithms for routing problems under vehicle capacity constraints," Annals of Operations Research, Springer, vol. 175(1), pages 213-245, March.
    11. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    12. Florent Hernandez & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A local branching matheuristic for the multi-vehicle routing problem with stochastic demands," Journal of Heuristics, Springer, vol. 25(2), pages 215-245, April.
    13. Bektaş, Tolga & Gouveia, Luis & Martínez-Sykora, Antonio & Salazar-González, Juan-José, 2019. "Balanced vehicle routing: Polyhedral analysis and branch-and-cut algorithm," European Journal of Operational Research, Elsevier, vol. 273(2), pages 452-463.
    14. Jinil Han & Chungmok Lee & Sungsoo Park, 2014. "A Robust Scenario Approach for the Vehicle Routing Problem with Uncertain Travel Times," Transportation Science, INFORMS, vol. 48(3), pages 373-390, August.
    15. Murakami, Keisuke, 2017. "A new model and approach to electric and diesel-powered vehicle routing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 23-37.
    16. Noorizadegan, Mahdi & Chen, Bo, 2018. "Vehicle routing with probabilistic capacity constraints," European Journal of Operational Research, Elsevier, vol. 270(2), pages 544-555.
    17. Tolga Bektaş & Güneş Erdoğan & Stefan Røpke, 2011. "Formulations and Branch-and-Cut Algorithms for the Generalized Vehicle Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 299-316, August.
    18. Taş, Duygu & Gendreau, Michel & Jabali, Ola & Laporte, Gilbert, 2016. "The traveling salesman problem with time-dependent service times," European Journal of Operational Research, Elsevier, vol. 248(2), pages 372-383.
    19. Atefi, Reza & Salari, Majid & C. Coelho, Leandro & Renaud, Jacques, 2018. "The open vehicle routing problem with decoupling points," European Journal of Operational Research, Elsevier, vol. 265(1), pages 316-327.
    20. Jonathan De La Vega & Pedro Munari & Reinaldo Morabito, 2019. "Robust optimization for the vehicle routing problem with multiple deliverymen," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 905-936, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:47:y:2013:i:1:p:38-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.