IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v28y1994i1p3-23.html
   My bibliography  Save this article

Restricted Recourse Strategies for Dynamic Networks with Random Arc Capacities

Author

Listed:
  • Warren B. Powell

    (Princeton University, Princeton, New Jersey 08544)

  • Linos F. Frantzeskakis

    (AT&T Bell Laboratories, Holmdel, New Jersey 07733-1988)

Abstract

We consider a class of multistage stochastic programming problems that can be formulated as networks with random arc capacities. Large problems have proved intractable using exact methods and hence various approximations have been proposed, ranging from approximating the recourse function to sampling a small number of scenarios to capture future uncertainties. We explore the use of specialized recourse strategies that are not as general as network recourse but nonetheless capture some of the important tradeoffs. These new recourse strategies allow us to develop approximations to the recourse function that can be used to solve problems with thousands of random variables. Given these approximations, classical optimization methods can be used. The concept of hierarchical recourse is introduced and used to synthesize and generalize earlier notions of nodal recourse and cyclic recourse.

Suggested Citation

  • Warren B. Powell & Linos F. Frantzeskakis, 1994. "Restricted Recourse Strategies for Dynamic Networks with Random Arc Capacities," Transportation Science, INFORMS, vol. 28(1), pages 3-23, February.
  • Handle: RePEc:inm:ortrsc:v:28:y:1994:i:1:p:3-23
    DOI: 10.1287/trsc.28.1.3
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.28.1.3
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.28.1.3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Shangyao & Tang, Ching-Hui, 2009. "Inter-city bus scheduling under variable market share and uncertain market demands," Omega, Elsevier, vol. 37(1), pages 178-192, February.
    2. Steftcho P. Dokov & David P. Morton, 2005. "Second-Order Lower Bounds on the Expectation of a Convex Function," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 662-677, August.
    3. Shangyao Yan & Fei-Yen Hsiao & Yi-Chun Chen, 2015. "Inter-School Bus Scheduling Under Stochastic Travel Times," Networks and Spatial Economics, Springer, vol. 15(4), pages 1049-1074, December.
    4. Crainic, Teodor Gabriel & Laporte, Gilbert, 1997. "Planning models for freight transportation," European Journal of Operational Research, Elsevier, vol. 97(3), pages 409-438, March.
    5. Song, Haiqing & Cheung, Raymond K. & Wang, Haiyan, 2014. "An arc-exchange decomposition method for multistage dynamic networks with random arc capacities," European Journal of Operational Research, Elsevier, vol. 233(3), pages 474-487.
    6. Shangyao Yan & Ching-Hui Tang, 2008. "An Integrated Framework for Intercity Bus Scheduling Under Stochastic Bus Travel Times," Transportation Science, INFORMS, vol. 42(3), pages 318-335, August.
    7. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    8. Alexander S. Estes & Michael O. Ball, 2020. "Equity and Strength in Stochastic Integer Programming Models for the Dynamic Single Airport Ground-Holding Problem," Transportation Science, INFORMS, vol. 54(4), pages 944-955, July.
    9. David P. Morton & R. Kevin Wood, 1999. "Restricted-Recourse Bounds for Stochastic Linear Programming," Operations Research, INFORMS, vol. 47(6), pages 943-956, December.
    10. Alexander S. Estes & Michael O. Ball, 2021. "Monge Properties, Optimal Greedy Policies, and Policy Improvement for the Dynamic Stochastic Transportation Problem," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 785-807, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:28:y:1994:i:1:p:3-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.