IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v10y1976i2p113-124.html
   My bibliography  Save this article

On the Fastest Route for Convoy-Type Traffic in Flowrate-Constrained Networks

Author

Listed:
  • Michael Hart Moore

    (Vector Research, Incorporated, Ann Arbor, Michigan)

Abstract

Flows of convoy-type traffic through networks whose arcs are characterized by both travel times and flowrate constraints are investigated. Suggested here, in particular, is the notion of a “flowrate-constrained fastest path”---a path by means of which the entirety of a volume of traffic, initially located at a source, node, can arrive at a sink in as short a time as possible when all traffic must flow along the same path and rates of flow along arcs are limited by flowrate constraints. Unlike the usual fastest path problems (those in networks without flowrate constraints), flowrate-constrained fastest times and paths both depend, in general, upon the initial volume of traffic at the source node. Several theorems about flowrate-constrained fastest times and paths are stated and proved; it is shown, for example, that such paths are independent of source volume whenever this volume is sufficiently large. Two algorithms for finding flowrate-constrained fastest times and paths are given.

Suggested Citation

  • Michael Hart Moore, 1976. "On the Fastest Route for Convoy-Type Traffic in Flowrate-Constrained Networks," Transportation Science, INFORMS, vol. 10(2), pages 113-124, May.
  • Handle: RePEc:inm:ortrsc:v:10:y:1976:i:2:p:113-124
    DOI: 10.1287/trsc.10.2.113
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.10.2.113
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.10.2.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calvete, Herminia I. & del-Pozo, Lourdes & Iranzo, José A., 2018. "Dealing with residual energy when transmitting data in energy-constrained capacitated networks," European Journal of Operational Research, Elsevier, vol. 269(2), pages 602-620.
    2. Marta Pascoal & M. Captivo & João Clímaco, 2006. "A comprehensive survey on the quickest path problem," Annals of Operations Research, Springer, vol. 147(1), pages 5-21, October.
    3. Mehdi Ghiyasvand & Azam Ramezanipour, 2018. "Solving the MCQP, MLT, and MMLT problems and computing weakly and strongly stable quickest paths," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 68(2), pages 217-230, June.
    4. Forghani-elahabad, Majid & Mahdavi-Amiri, Nezam, 2015. "An efficient algorithm for the multi-state two separate minimal paths reliability problem with budget constraint," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 472-481.
    5. Herminia Calvete & Lourdes del-Pozo & José Iranzo, 2012. "Algorithms for the quickest path problem and the reliable quickest path problem," Computational Management Science, Springer, vol. 9(2), pages 255-272, May.
    6. Ashutosh Sharma & Rajiv Kumar & Manar Wasif Abu Talib & Saurabh Srivastava & Razi Iqbal, 2019. "Network modelling and computation of quickest path for service-level agreements using bi-objective optimization," International Journal of Distributed Sensor Networks, , vol. 15(10), pages 15501477198, October.
    7. Sedeño-Noda, Antonio & González-Barrera, Jonathan D., 2014. "Fast and fine quickest path algorithm," European Journal of Operational Research, Elsevier, vol. 238(2), pages 596-606.
    8. Majid Forghani-elahabad & Omar Mutab Alsalami, 2023. "Using a Node–Child Matrix to Address the Quickest Path Problem in Multistate Flow Networks under Transmission Cost Constraints," Mathematics, MDPI, vol. 11(24), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:10:y:1976:i:2:p:113-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.