IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v36y1988i3p445-453.html
   My bibliography  Save this article

An Adaptable Scheduling Algorithm for Flexible Flow Lines

Author

Listed:
  • Robert J. Wittrock

    (IBM Thomas J. Watson Research Center, Yorktown Heights, New York)

Abstract

Consider a manufacturing line that produces parts of several types. Each part must be processed by at most one machine in each of several banks of machines. This paper presents an algorithm that schedules the loading of parts into such a line. The objective is primarily to minimize the makespan and secondarily to minimize queueing. The problem is decomposed into three subproblems and each of these is solved using a fast heuristic. The most challenging subproblem is that of finding a good loading sequence, and this is addressed using workload concepts and an approximation to dynamic programming. We make several extensions to the algorithm in order to handle limited storage capacity, expediting, and reactions to system dynamics. The algorithm was tested by computing schedules for a real production line, and the results are discussed.

Suggested Citation

  • Robert J. Wittrock, 1988. "An Adaptable Scheduling Algorithm for Flexible Flow Lines," Operations Research, INFORMS, vol. 36(3), pages 445-453, June.
  • Handle: RePEc:inm:oropre:v:36:y:1988:i:3:p:445-453
    DOI: 10.1287/opre.36.3.445
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.36.3.445
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.36.3.445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxing Li & Ray Y. Zhong & Ting Qu & George Q. Huang, 2022. "Spatial–temporal out-of-order execution for advanced planning and scheduling in cyber-physical factories," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1355-1372, June.
    2. Wardono, Bagas & Fathi, Yahya, 2004. "A tabu search algorithm for the multi-stage parallel machine problem with limited buffer capacities," European Journal of Operational Research, Elsevier, vol. 155(2), pages 380-401, June.
    3. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    4. Li, Shanling, 1997. "A hybrid two-stage flowshop with part family, batch production, major and minor set-ups," European Journal of Operational Research, Elsevier, vol. 102(1), pages 142-156, October.
    5. Lin, Hung-Tso & Liao, Ching-Jong, 2003. "A case study in a two-stage hybrid flow shop with setup time and dedicated machines," International Journal of Production Economics, Elsevier, vol. 86(2), pages 133-143, November.
    6. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1998. "The flow shop with parallel machines: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 226-253, April.
    7. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    8. Tzu-Li Chen & Chen-Yang Cheng & Yi-Han Chou, 2020. "Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming," Annals of Operations Research, Springer, vol. 290(1), pages 813-836, July.
    9. Ahmadi, Reza H. & Kouvelis, Panagiotis, 1999. "Design of electronic assembly lines: An analytical framework and its application," European Journal of Operational Research, Elsevier, vol. 115(1), pages 113-137, May.
    10. Quadt, Daniel & Kuhn, Heinrich, 2007. "A taxonomy of flexible flow line scheduling procedures," European Journal of Operational Research, Elsevier, vol. 178(3), pages 686-698, May.
    11. Quadt, Daniel & Kuhn, Heinrich, 2007. "Batch scheduling of jobs with identical process times on flexible flow lines," International Journal of Production Economics, Elsevier, vol. 105(2), pages 385-401, February.
    12. Kurz, Mary E. & Askin, Ronald G., 2004. "Scheduling flexible flow lines with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 159(1), pages 66-82, November.
    13. Santos, D. L. & Hunsucker, J. L. & Deal, D. E., 1995. "Global lower bounds for flow shops with multiple processors," European Journal of Operational Research, Elsevier, vol. 80(1), pages 112-120, January.
    14. Thornton, Henry W. & Hunsucker, John L., 2004. "A new heuristic for minimal makespan in flow shops with multiple processors and no intermediate storage," European Journal of Operational Research, Elsevier, vol. 152(1), pages 96-114, January.
    15. Vo[ss], Stefan & Witt, Andreas, 2007. "Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application," International Journal of Production Economics, Elsevier, vol. 105(2), pages 445-458, February.
    16. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    17. Kurz, Mary E. & Askin, Ronald G., 2003. "Comparing scheduling rules for flexible flow lines," International Journal of Production Economics, Elsevier, vol. 85(3), pages 371-388, September.
    18. Brah, Shaukat A. & Loo, Luan Luan, 1999. "Heuristics for scheduling in a flow shop with multiple processors," European Journal of Operational Research, Elsevier, vol. 113(1), pages 113-122, February.

    More about this item

    Keywords

    581 production scheduling heuristic;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:36:y:1988:i:3:p:445-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.