IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v56y2010i12p2316-2322.html
   My bibliography  Save this article

Reassessing Data Quality for Information Products

Author

Listed:
  • Debabrata Dey

    (Michael G. Foster School of Business, University of Washington, Seattle, Washington 98195)

  • Subodha Kumar

    (Mays Business School, Texas A& M University, College Station, Texas 77843)

Abstract

The quality profile of information retrieved from a database using a query is quite important in the context of managerial decision making. Parssian et al. (Parssian, A., S. Sarkar, V. S. Jacob. 2004. Assessing data quality for information products: Impact of selection, projection, and Cartesian product. Management Sci. 50(7) 967-982) propose a methodology to determine the quality profile of the result of a query from the quality profile of the source data. Although they consider an important problem, and the proposed methodology is quite useful in practice, some of their results for the selection operation are not correct in general. Here, we identify these errors and present appropriate corrections.

Suggested Citation

  • Debabrata Dey & Subodha Kumar, 2010. "Reassessing Data Quality for Information Products," Management Science, INFORMS, vol. 56(12), pages 2316-2322, December.
  • Handle: RePEc:inm:ormnsc:v:56:y:2010:i:12:p:2316-2322
    DOI: 10.1287/mnsc.1100.1261
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1100.1261
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1100.1261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kon, Henry B. & Madnick, Stuart E. & Siegel, Michael D., 1995. "Good answers from bad data : a data management strategy," Working papers 3868-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    2. Amir Parssian & Sumit Sarkar & Varghese S. Jacob, 2004. "Assessing Data Quality for Information Products: Impact of Selection, Projection, and Cartesian Product," Management Science, INFORMS, vol. 50(7), pages 967-982, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiwari, Sunil & Sharma, Pankaj & Choi, Tsan-Ming & Lim, Andrew, 2023. "Blockchain and third-party logistics for global supply chain operations: Stakeholders’ perspectives and decision roadmap," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    2. Kunwar Raghvendra Singh & Ankit Pratim Goswami & Ajay S. Kalamdhad & Bimlesh Kumar, 2020. "Development of irrigation water quality index incorporating information entropy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3119-3132, April.
    3. Hazen, Benjamin T. & Boone, Christopher A. & Ezell, Jeremy D. & Jones-Farmer, L. Allison, 2014. "Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications," International Journal of Production Economics, Elsevier, vol. 154(C), pages 72-80.
    4. Satyavati Shukla & Shirishkumar Gedam & M. V. Khire, 2020. "Implications of demographic changes and land transformations on surface water quality of rural and urban subbasins of Upper Bhima River basin, Maharashtra, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 129-171, January.
    5. Qi Liu & Gengzhong Feng & Giri Kumar Tayi & Jun Tian, 2021. "Managing Data Quality of the Data Warehouse: A Chance-Constrained Programming Approach," Information Systems Frontiers, Springer, vol. 23(2), pages 375-389, April.
    6. Xiangyu Chang & Yinghui Huang & Mei Li & Xin Bo & Subodha Kumar, 2021. "Efficient Detection of Environmental Violators: A Big Data Approach," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1246-1270, May.
    7. Debabrata Dey & Subodha Kumar, 2013. "Data Quality of Query Results with Generalized Selection Conditions," Operations Research, INFORMS, vol. 61(1), pages 17-31, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Parssian & Sumit Sarkar & Varghese S. Jacob, 2009. "Impact of the Union and Difference Operations on the Quality of Information Products," Information Systems Research, INFORMS, vol. 20(1), pages 99-120, March.
    2. Debabrata Dey & Subodha Kumar, 2013. "Data Quality of Query Results with Generalized Selection Conditions," Operations Research, INFORMS, vol. 61(1), pages 17-31, February.
    3. Qi Liu & Gengzhong Feng & Nengmin Wang & Giri Kumar Tayi, 2018. "A multi-objective model for discovering high-quality knowledge based on data quality and prior knowledge," Information Systems Frontiers, Springer, vol. 20(2), pages 401-416, April.
    4. Qi Liu & Gengzhong Feng & Giri Kumar Tayi & Jun Tian, 2021. "Managing Data Quality of the Data Warehouse: A Chance-Constrained Programming Approach," Information Systems Frontiers, Springer, vol. 23(2), pages 375-389, April.
    5. Amir Parssian & Sumit Sarkar & Varghese S. Jacob, 2004. "Assessing Data Quality for Information Products: Impact of Selection, Projection, and Cartesian Product," Management Science, INFORMS, vol. 50(7), pages 967-982, July.
    6. Qi Liu & Gengzhong Feng & Nengmin Wang & Giri Kumar Tayi, 0. "A multi-objective model for discovering high-quality knowledge based on data quality and prior knowledge," Information Systems Frontiers, Springer, vol. 0, pages 1-16.
    7. Hazen, Benjamin T. & Boone, Christopher A. & Ezell, Jeremy D. & Jones-Farmer, L. Allison, 2014. "Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications," International Journal of Production Economics, Elsevier, vol. 154(C), pages 72-80.
    8. Dominikus Kleindienst, 2017. "The data quality improvement plan: deciding on choice and sequence of data quality improvements," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(4), pages 387-398, November.
    9. Jingran Wang & Yi Liu & Peigong Li & Zhenxing Lin & Stavros Sindakis & Sakshi Aggarwal, 2024. "Overview of Data Quality: Examining the Dimensions, Antecedents, and Impacts of Data Quality," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 1159-1178, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:56:y:2010:i:12:p:2316-2322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.