IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v49y2019i4p239-248.html
   My bibliography  Save this article

Chassis Leasing and Selection Policy for Port Operations

Author

Listed:
  • Ted Gifford

    (Engineering and Advanced Analytics, Schneider National Inc., Green Bay, Wisconsin 54313, Deceased)

  • Robert Gremley

    (Engineering and Advanced Analytics, Schneider National Inc., Green Bay, Wisconsin 54313)

Abstract

Port cargo drayage operations manage the over-the-road transport of shipping containers that arrive and depart on ocean-going container vessels at a port terminal. While on land, containers are placed on wheeled chassis until they return to the port facility. The acquisition and management of these chassis are significant operational challenges. We address a particular operating environment where chassis may be engaged either as daily rental or via a committed long-term lease at lower cost. We present and describe the implementation of a solution methodology that addresses the two decision problems that arise with this dual sourcing approach: (1) the optimal fleet size for leased chassis and (2) a real-time decision policy for selecting between rental and leased chassis as containers arrive. As we demonstrate, our solution represents an integrated approach that combines descriptive, predictive, and prescriptive analytics, and exhibits a novel interplay of optimization, simulation, and predictive modeling. We conclude with an analysis of the financial benefit that has been achieved and a discussion of the applicability of our methodology to other problem settings.

Suggested Citation

  • Ted Gifford & Robert Gremley, 2019. "Chassis Leasing and Selection Policy for Port Operations," Interfaces, INFORMS, vol. 49(4), pages 239-248, July.
  • Handle: RePEc:inm:orinte:v:49:y:2019:i:4:p:239-248
    DOI: 10.1287/inte.2019.0991
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/inte.2019.0991
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2019.0991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hugo P. Simão & Jeff Day & Abraham P. George & Ted Gifford & John Nienow & Warren B. Powell, 2009. "An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application," Transportation Science, INFORMS, vol. 43(2), pages 178-197, May.
    2. ManWo Ng & Wayne K. Talley, 2017. "Chassis inventory management at U.S. container ports:modelling and case study," International Journal of Production Research, Taylor & Francis Journals, vol. 55(18), pages 5394-5404, September.
    3. Chassiakos, Anastasios & Jula, Hossein & VanderBeek, Timothy & Shellhammer, Matt & An, Samnang Dona, 2017. "Analysis and Optimization Methods for Centralized Processing of Chassis," Institute of Transportation Studies, Working Paper Series qt1t75c3vw, Institute of Transportation Studies, UC Davis.
    4. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josip Božičević & Ivica Lovrić & Dajana Bartulović & Sanja Steiner & Violeta Roso & Jasmina Pašagić Škrinjar, 2021. "Determining Optimal Dry Port Location for Seaport Rijeka Using AHP Decision-Making Methodology," Sustainability, MDPI, vol. 13(11), pages 1-21, June.
    2. Belgacem Bouzaiene-Ayari & Clark Cheng & Sourav Das & Ricardo Fiorillo & Warren B. Powell, 2016. "From Single Commodity to Multiattribute Models for Locomotive Optimization: A Comparison of Optimal Integer Programming and Approximate Dynamic Programming," Transportation Science, INFORMS, vol. 50(2), pages 366-389, May.
    3. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Zeng, Qingcheng, 2020. "The stochastic container relocation problem with flexible service policies," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 116-163.
    4. Voelkel, Michael A. & Sachs, Anna-Lena & Thonemann, Ulrich W., 2020. "An aggregation-based approximate dynamic programming approach for the periodic review model with random yield," European Journal of Operational Research, Elsevier, vol. 281(2), pages 286-298.
    5. Afef Lagha & Bechir Ben Daya & Jean-François Audy, 2024. "Assessment of Greenhouse Gas Emissions from Heavy-Duty Trucking in a Non-Containerized Port through Simulation-Based Methods," Sustainability, MDPI, vol. 16(5), pages 1-27, February.
    6. Rempel, M. & Cai, J., 2021. "A review of approximate dynamic programming applications within military operations research," Operations Research Perspectives, Elsevier, vol. 8(C).
    7. Wiercx, Max & van Kalmthout, Martijn & Wiegmans, Bart, 2019. "Inland waterway terminal yard configuration contributing to sustainability: Modeling yard operations," Research in Transportation Economics, Elsevier, vol. 73(C), pages 4-16.
    8. Saif Benjaafar & Daniel Jiang & Xiang Li & Xiaobo Li, 2022. "Dynamic Inventory Repositioning in On-Demand Rental Networks," Management Science, INFORMS, vol. 68(11), pages 7861-7878, November.
    9. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    10. Monnerat, Filipe & Dias, Joana & Alves, Maria João, 2019. "Fleet management: A vehicle and driver assignment model," European Journal of Operational Research, Elsevier, vol. 278(1), pages 64-75.
    11. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    12. Dimitri J. Papageorgiou & Myun-Seok Cheon & George Nemhauser & Joel Sokol, 2015. "Approximate Dynamic Programming for a Class of Long-Horizon Maritime Inventory Routing Problems," Transportation Science, INFORMS, vol. 49(4), pages 870-885, November.
    13. Park, Jaehun & Lee, Byung Kwon, 2020. "Liner-dedicated manageability estimation for port operational reliability," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    14. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
    15. Pérez Rivera, Arturo E. & Mes, Martijn R.K., 2017. "Anticipatory freight selection in intermodal long-haul round-trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 176-194.
    16. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    17. Lange, Ann-Kathrin & Nellen, Nicole & Jahn, Carlos, 2022. "Truck appointment systems: How can they be improved and what are their limits?," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 615-655, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    18. Geoffrey C. Preston & Phillip Horne & Maria Paola Scaparra & Jesse R. O’Hanley, 2020. "Masterplanning at the Port of Dover: The Use of Discrete-Event Simulation in Managing Road Traffic," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    19. Andrei Jirnyi & Vadym Lepetyuk, 2011. "A reinforcement learning approach to solving incomplete market models with aggregate uncertainty," Working Papers. Serie AD 2011-21, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    20. Kastner, Marvin & Kämmerling, Nicolas & Jahn, Carlos & Clausen, Uwe, 2020. "Equipment selection and layout planning - Literature overview and research directions," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 485-519, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:49:y:2019:i:4:p:239-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.