IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v35y2023i5p1179-1194.html
   My bibliography  Save this article

An Approximation Algorithm for k -Depot Split Delivery Vehicle Routing Problem

Author

Listed:
  • Xiaofan Lai

    (Institute of Big Data Intelligent Management and Decision, College of Management, Shenzhen University, Shenzhen 518055, China)

  • Liang Xu

    (School of Business Administration, The Southwestern University of Finance and Economics, Chengdu 611130, China)

  • Zhou Xu

    (Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong, China)

  • Yang Du

    (School of Business Administration, The Southwestern University of Finance and Economics, Chengdu 611130, China)

Abstract

A multidepot capacitated vehicle routing problem aims to serve customers’ demands using a fleet of capacitated vehicles located in multiple depots, such that the total travel cost of the vehicles is minimized. We study a variant of this problem, the k -depot split delivery vehicle routing problem (or k -DSDVRP in short), for the situation where each customer’s demand can be served by more than one vehicle, and the total number of depots, denoted by k ≥ 2 , is a fixed constant. This is a challenging problem with broad applications in the logistics industry, for which no constant ratio approximation algorithm is known. We develop a new approximation algorithm for the k -DSDVRP, ensuring an approximation ratio of ( 6 − 4 / k ) and a polynomial running time for any fixed constant k ≥ 2 . To achieve this, we propose a novel solution framework based on a new relaxation of the problem, a cycle splitting procedure, and a vehicle assignment procedure. To further enhance its efficiency for practical usage, we adapt the newly developed approximation algorithm to a heuristic, which runs in polynomial time even when k is arbitrarily large. Experimental results show that this heuristic outperforms a commercial optimization solver and a standard vehicle routing heuristic. Moreover, our newly proposed solution framework can be applied to developing new constant ratio approximation algorithms for several other variants of the k -DSDVRP with k ≥ 2 being a fixed constant.

Suggested Citation

  • Xiaofan Lai & Liang Xu & Zhou Xu & Yang Du, 2023. "An Approximation Algorithm for k -Depot Split Delivery Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1179-1194, September.
  • Handle: RePEc:inm:orijoc:v:35:y:2023:i:5:p:1179-1194
    DOI: 10.1287/ijoc.2021.0193
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.0193
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.0193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. M. Belenguer & M. C. Martinez & E. Mota, 2000. "A Lower Bound for the Split Delivery Vehicle Routing Problem," Operations Research, INFORMS, vol. 48(5), pages 801-810, October.
    2. Zhou Xu & Brian Rodrigues, 2015. "A 3/2-Approximation Algorithm for the Multiple TSP with a Fixed Number of Depots," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 636-645, November.
    3. Guy Desaulniers, 2010. "Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 58(1), pages 179-192, February.
    4. Archetti, Claudia & Bianchessi, Nicola & Speranza, M. Grazia, 2014. "Branch-and-cut algorithms for the split delivery vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 685-698.
    5. J Dethloff, 2002. "Relation between vehicle routing problems: an insertion heuristic for the vehicle routing problem with simultaneous delivery and pick-up applied to the vehicle routing problem with backhauls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(1), pages 115-118, January.
    6. Tobias Harks & Felix G König & Jannik Matuschke, 2013. "Approximation Algorithms for Capacitated Location Routing," Transportation Science, INFORMS, vol. 47(1), pages 3-22, February.
    7. Jean-Yves Potvin, 2009. "State-of-the Art Review ---Evolutionary Algorithms for Vehicle Routing," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 518-548, November.
    8. Jean-Yves Potvin & Tanguy Kervahut & Bruno-Laurent Garcia & Jean-Marc Rousseau, 1996. "The Vehicle Routing Problem with Time Windows Part I: Tabu Search," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 158-164, May.
    9. Claudia Archetti & M. Grazia Speranza & Martin W. P. Savelsbergh, 2008. "An Optimization-Based Heuristic for the Split Delivery Vehicle Routing Problem," Transportation Science, INFORMS, vol. 42(1), pages 22-31, February.
    10. Xu, Zhou & Rodrigues, Brian, 2017. "An extension of the Christofides heuristic for the generalized multiple depot multiple traveling salesmen problem," European Journal of Operational Research, Elsevier, vol. 257(3), pages 735-745.
    11. Nicola Bianchessi & Michael Drexl & Stefan Irnich, 2019. "The Split Delivery Vehicle Routing Problem with Time Windows and Customer Inconvenience Constraints," Transportation Science, INFORMS, vol. 53(4), pages 1067-1084, March.
    12. Luc Muyldermans & Patrick Beullens & Dirk Cattrysse & Dirk Van Oudheusden, 2005. "Exploring Variants of 2-Opt and 3-Opt for the General Routing Problem," Operations Research, INFORMS, vol. 53(6), pages 982-995, December.
    13. Nicola Bianchessi & Stefan Irnich, 2019. "Branch-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 53(2), pages 442-462, March.
    14. S Salhi & G Nagy, 1999. "A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1034-1042, October.
    15. Qie He & Stefan Irnich & Yongjia Song, 2019. "Branch-and-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Transportation Science, INFORMS, vol. 53(5), pages 1409-1426, September.
    16. Jean-Yves Potvin & Samy Bengio, 1996. "The Vehicle Routing Problem with Time Windows Part II: Genetic Search," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 165-172, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianli Shi & Jin Zhang & Kun Wang & Xin Fang, 2018. "Particle Swarm Optimization for Split Delivery Vehicle Routing Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(02), pages 1-42, April.
    2. Pedro Munari & Martin Savelsbergh, 2020. "A Column Generation-Based Heuristic for the Split Delivery Vehicle Routing Problem with Time Windows," SN Operations Research Forum, Springer, vol. 1(4), pages 1-24, December.
    3. Katrin Heßler & Stefan Irnich, 2021. "Partial Dominance in Branch-Price-and-Cut for the Basic Multi-Compartment Vehicle-Routing Problem," Working Papers 2115, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    4. Gizem Ozbaygin & Oya Karasan & Hande Yaman, 2018. "New exact solution approaches for the split delivery vehicle routing problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 85-115, March.
    5. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    6. İbrahim Muter & Ş. İlker Birbil & Güvenç Şahin, 2010. "Combination of Metaheuristic and Exact Algorithms for Solving Set Covering-Type Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 603-619, November.
    7. Jiliu Li & Zhixing Luo & Roberto Baldacci & Hu Qin & Zhou Xu, 2023. "A New Exact Algorithm for Single-Commodity Vehicle Routing with Split Pickups and Deliveries," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 31-49, January.
    8. Nicola Bianchessi & Stefan Irnich, 2016. "Branch-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows," Working Papers 1620, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    9. S Mitra, 2008. "A parallel clustering technique for the vehicle routing problem with split deliveries and pickups," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1532-1546, November.
    10. Berbotto, Leonardo & García, Sergio & Nogales, Francisco J., 2011. "A vehicle routing model with split delivery and stop nodes," DES - Working Papers. Statistics and Econometrics. WS ws110906, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Katrin Heßler & Stefan Irnich, 2023. "Partial Dominance in Branch-Price-and-Cut for the Basic Multicompartment Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 50-65, January.
    12. Leonardo Berbotto & Sergio García & Francisco Nogales, 2014. "A Randomized Granular Tabu Search heuristic for the split delivery vehicle routing problem," Annals of Operations Research, Springer, vol. 222(1), pages 153-173, November.
    13. Ann Melissa Campbell & Martin Savelsbergh, 2004. "Efficient Insertion Heuristics for Vehicle Routing and Scheduling Problems," Transportation Science, INFORMS, vol. 38(3), pages 369-378, August.
    14. Bortfeldt, Andreas & Yi, Junmin, 2020. "The Split Delivery Vehicle Routing Problem with three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 282(2), pages 545-558.
    15. Annelieke C. Baller & Said Dabia & Wout E. H. Dullaert & Daniele Vigo, 2020. "The Vehicle Routing Problem with Partial Outsourcing," Transportation Science, INFORMS, vol. 54(4), pages 1034-1052, July.
    16. C. Archetti & M. Bouchard & G. Desaulniers, 2011. "Enhanced Branch and Price and Cut for Vehicle Routing with Split Deliveries and Time Windows," Transportation Science, INFORMS, vol. 45(3), pages 285-298, August.
    17. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    18. Frank Hennig & Bjørn Nygreen & Marco E. Lübbecke, 2012. "Nested column generation applied to the crude oil tanker routing and scheduling problem with split pickup and split delivery," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 298-310, April.
    19. Kandula, Shanthan & Krishnamoorthy, Srikumar & Roy, Debjit, 2020. "A Predictive and Prescriptive Analytics Framework for Efficient E-Commerce Order Delivery," IIMA Working Papers WP 2020-11-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    20. Michelle Dunbar & Simon Belieres & Nagesh Shukla & Mehrdad Amirghasemi & Pascal Perez & Nishikant Mishra, 2020. "A genetic column generation algorithm for sustainable spare part delivery: application to the Sydney DropPoint network," Annals of Operations Research, Springer, vol. 290(1), pages 923-941, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:35:y:2023:i:5:p:1179-1194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.