IDEAS home Printed from https://ideas.repec.org/a/igg/jirr00/v13y2023i1p1-21.html
   My bibliography  Save this article

Effective Information Retrieval Framework for Twitter Data Analytics

Author

Listed:
  • Ravindra Kumar Singh

    (National Institute of Technology, Jalandhar, India)

Abstract

The widespread adoption of opinion mining and sentiment analysis in higher cognitive processes encourages the need for real time processing of social media data to capture the insights about user's sentiment polarity, user's opinions, and current trends. In recent years, lots of studies were conducted around the processing of data to achieve higher accuracy. But reducing the time of processing still remained challenging. Later, big data technologies came into existence to solve these challenges but those have its own set of complexities along with having hardware deadweight on the system. The contribution of this article is to touch upon mentioned challenges by presenting a climbable, quick and fault tolerant framework to process real-time data to extract hidden insights. This framework is versatile enough to support batch processing along with real time data streams in parallel and distributed environment. Experimental analysis of proposed framework on twitter posts concludes it as quicker, robust, fault tolerant, and comparatively more accurate with traditional approaches.

Suggested Citation

  • Ravindra Kumar Singh, 2023. "Effective Information Retrieval Framework for Twitter Data Analytics," International Journal of Information Retrieval Research (IJIRR), IGI Global Scientific Publishing, vol. 13(1), pages 1-21, January.
  • Handle: RePEc:igg:jirr00:v:13:y:2023:i:1:p:1-21
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJIRR.325798
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rong, Jia & Vu, Huy Quan & Law, Rob & Li, Gang, 2012. "A behavioral analysis of web sharers and browsers in Hong Kong using targeted association rule mining," Tourism Management, Elsevier, vol. 33(4), pages 731-740.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Liu & Ying Zhang & Huan Zhang & Xiping Yang, 2021. "A Methodological Workflow for Deriving the Association of Tourist Destinations Based on Online Travel Reviews: A Case Study of Yunnan Province, China," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    2. Wu, Mao-Ying & Wall, Geoffrey & Pearce, Philip L., 2014. "Shopping experiences: International tourists in Beijing's Silk Market," Tourism Management, Elsevier, vol. 41(C), pages 96-106.
    3. Tosporn Arreeras & Mikiharu Arimura & Takumi Asada & Saharat Arreeras, 2019. "Association Rule Mining Tourist-Attractive Destinations for the Sustainable Development of a Large Tourism Area in Hokkaido Using Wi-Fi Tracking Data," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    4. Ahani, Ali & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh & Sanzogni, Louis & Tarik, A. Rashid & Knox, Kathy & Samad, Sarminah & Ibrahim, Othman, 2019. "Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 331-343.
    5. Versichele, Mathias & de Groote, Liesbeth & Claeys Bouuaert, Manuel & Neutens, Tijs & Moerman, Ingrid & Van de Weghe, Nico, 2014. "Pattern mining in tourist attraction visits through association rule learning on Bluetooth tracking data: A case study of Ghent, Belgium," Tourism Management, Elsevier, vol. 44(C), pages 67-81.
    6. Zajadacz Alina & Minkwitz Aleksandra, 2020. "Using Social Media Data to Plan for Tourism," Quaestiones Geographicae, Sciendo, vol. 39(3), pages 125-138, September.
    7. Jimenez-Marquez, Jose Luis & Gonzalez-Carrasco, Israel & Lopez-Cuadrado, Jose Luis & Ruiz-Mezcua, Belen, 2019. "Towards a big data framework for analyzing social media content," International Journal of Information Management, Elsevier, vol. 44(C), pages 1-12.
    8. Kim, Hyunwoo & Hong, Suckwon & Kwon, Ohjin & Lee, Changyong, 2017. "Concentric diversification based on technological capabilities: Link analysis of products and technologies," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 246-257.
    9. Đorđević Aleksandar & Zečević Bojan & Hristov Stančić Branislava, 2016. "Importance of Various Service Types in Hotels - Empirical Analysis," Economic Themes, Sciendo, vol. 54(3), pages 403-423, September.
    10. Yadegaridehkordi, Elaheh & Nilashi, Mehrbakhsh & Nizam Bin Md Nasir, Mohd Hairul & Momtazi, Saeedeh & Samad, Sarminah & Supriyanto, Eko & Ghabban, Fahad, 2021. "Customers segmentation in eco-friendly hotels using multi-criteria and machine learning techniques," Technology in Society, Elsevier, vol. 65(C).
    11. Li, Gang & Law, Rob & Vu, Huy Quan & Rong, Jia, 2013. "Discovering the hotel selection preferences of Hong Kong inbound travelers using the Choquet Integral," Tourism Management, Elsevier, vol. 36(C), pages 321-330.
    12. Abbasi, Amir Zaib & Tsiotsou, Rodoula H. & Hussain, Khalil & Rather, Raouf Ahmad & Ting, Ding Hooi, 2023. "Investigating the impact of social media images’ value, consumer engagement, and involvement on eWOM of a tourism destination: A transmittal mediation approach," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jirr00:v:13:y:2023:i:1:p:1-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.