IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v7y2013i4p77.html
   My bibliography  Save this article

Modeling of Transient Groundwater Flow Using Fuzzy Approach

Author

Listed:
  • Qassem Jalut
  • Rasul Khalaf
  • Thulfikar Abdul-Mehdi

Abstract

This paper considers the modeling transient groundwater flow under imprecisely known parameters using fuzzy approach. A new approach has been developed to study the effects of parameters uncertainty on the dependent variable, herein is the head. The proposed approach is developed based on fuzzy set theory combined with interval analysis. The kind of uncertainty modeled here is the imprecision associated with model parameters as a result of machine or human imprecision or lack of information. In this technique each parameter is described by a membership function. The fuzzy inputs into the model are in the form of intervals so as the outputs. The resulting head interval represents the change in the output due to interval inputs of model parameters. The proposed technique is illustrated using a two dimensional flow problem solved with finite difference schemes using triangular and trapezoidal fuzzy membership functions. Three input parameters are considered as a fuzzy number (transmissivity, storage coefficient, and recharge). This model was applicable for transient flow through isotropic, heterogeneous soil. The groundwater flow problem analysis requires interval input values for the parameters, the output may be presented in terms of mean value, upper and lower bounds of the hydraulic head. The width of the resulting head interval can be used as a measure of uncertainty due to inputs imprecision. The model compared with other models (fuzzy with finite difference, stochastic, and Kriging), analytical solution for examples, and then applied to the field data (Bahr Al-Najaf, a case study in Iraq), the proposed technique shows good results. When more than one parameter are considered as a fuzzy number, the condition became more complicated and the uncertainty will increase, that was really shown by the proposed model. The model outputs can be used as the inputs for the subsequent risk analysis, decision making-processes and evaluation.

Suggested Citation

  • Qassem Jalut & Rasul Khalaf & Thulfikar Abdul-Mehdi, 2013. "Modeling of Transient Groundwater Flow Using Fuzzy Approach," Modern Applied Science, Canadian Center of Science and Education, vol. 7(4), pages 1-77, April.
  • Handle: RePEc:ibn:masjnl:v:7:y:2013:i:4:p:77
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/24975/16079
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/24975
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:7:y:2013:i:4:p:77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.