IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v13y2019i6p89.html
   My bibliography  Save this article

The Effect of Replacing Fine Silica with Fine Phosphate Waste (Russaifa mine) on the Compressive Strength of Mortar and Concrete: A Case Study in Jordan

Author

Listed:
  • Hesham Alsharie
  • Eng. Omar Alayed

Abstract

It is known that the dumping of Phosphate wastes from Phosphate factories and mines has a negative effect on the environment. In an effort to reduce dumping, this study examines the possible reuse of this waste as a replacement for the fine sand of silica in mortar and concrete. Phosphate waste replaces silica with the following by-weight percentages- 0%, 10%, 25%, 50% and 100%. To check the feasibility of such reuse, 30 mortar cubes, 30 concrete cubes, and 20 concrete cylinders were prepared for testing to achieve a compressive strength of 25 MPa according to ASTM (211.1-81). The tests performed in this paper are conducted to the following samples- (50 * 50 * 50 mm) mortar samples, (150 * 150 * 150 mm) concrete cubes, and (150 * 300 mm) concrete cylinders. The samples were left in curing for a period of 7 days for some samples, and others for 28 days. The results show that the use of Phosphate wastes increased the compressive strength of mortar by 29%. In concrete cubes, the use of Phosphate wastes increased compressive strength by 26%. In concrete cylinders, the use of Phosphate wastes increased the compressive strength by 34%. Subsequently, it is proposed that the stone squanders of Phosphate be utilized as an alternative to fine silica, and they demonstrated their quality through the basic tests of aggregate. The increase in stone strength is attributed to Phosphate waste as it has less absorption. The increase in the strength of Phosphate sand is due to the presence of chemical substances that increase the strength of its cohesion, such as TCP (Tricalcium Phosphate) (40.72%), P2O5 (Phosphate pentoxide) (18.64%), CaO (Calcium oxide) (28.22%) and SiO2 (Silicon dioxide) (44.45%). The percentage of CL (Chlorine) is minimal (0.01%).

Suggested Citation

  • Hesham Alsharie & Eng. Omar Alayed, 2019. "The Effect of Replacing Fine Silica with Fine Phosphate Waste (Russaifa mine) on the Compressive Strength of Mortar and Concrete: A Case Study in Jordan," Modern Applied Science, Canadian Center of Science and Education, vol. 13(6), pages 1-89, June.
  • Handle: RePEc:ibn:masjnl:v:13:y:2019:i:6:p:89
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/0/0/39583/40811
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/0/39583
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:13:y:2019:i:6:p:89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.