IDEAS home Printed from https://ideas.repec.org/a/ibn/jmsrjl/v12y2023i1p22-35.html
   My bibliography  Save this article

Mechanical Performance of Hybrid Graphene Nanoplates, Fly-Ash, Cement, Silica, and Sand Particles Filled Cross-Ply Carbon Fibre Woven Fabric Reinforced Epoxy Polymer Composites Beam and Column

Author

Listed:
  • Till Quadflieg
  • Vijay K. Srivastava
  • Thomas Gries
  • Shantanu Bhatt

Abstract

The main goal of this study is to reduce the brittleness of a fibre-reinforced cement base structure when exposed to the effects of graphene nanoplates, fly ash, silica, sand, and cement fillers to better understand the effect of hybrid nano/micro particle fillers on the mechanical performance of cross-ply carbon fibre reinforced epoxy resin composites. A three-point bending test through the width was used to measure flexural strength. The impact tests Izod at low impact velocity and Charpy through the thickness were used to determine the dynamic fracture strengths of pre-cracked and non-cracked composite samples. Also, the compressive test method was used to measure the compressive strength of hybrid particles and short glass fibre-reinforced epoxy resin composite square and circular columns. The results show compressive strength and flexural strength. Izod impact energy, Charpy impact energy, and dynamic fracture toughness of hybrid nano/microparticle-filled fibre composites have higher values than virgin fibre composites due to the influence of graphene nanoparticles and perfect interface bonding between two dissimilar molecules of nano and microparticles, which improve the fracture toughness and absorb impact energy. Overall, the results indicate that molecules of nano/microparticle-filled carbon fibre and glass fibre-reinforced epoxy resin composites can be used in aggressive environments because of the improved mechanical properties in comparison to the virgin fibre composites. In addition, SEM micrographs clearly indicate that nano- and microparticles are resistant crack propagation and deboned of matrix fibres.

Suggested Citation

  • Till Quadflieg & Vijay K. Srivastava & Thomas Gries & Shantanu Bhatt, 2023. "Mechanical Performance of Hybrid Graphene Nanoplates, Fly-Ash, Cement, Silica, and Sand Particles Filled Cross-Ply Carbon Fibre Woven Fabric Reinforced Epoxy Polymer Composites Beam and Column," Journal of Materials Science Research, Canadian Center of Science and Education, vol. 12(1), pages 22-35, June.
  • Handle: RePEc:ibn:jmsrjl:v:12:y:2023:i:1:p:22-35
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jmsr/article/download/0/0/48615/52355
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jmsr/article/view/0/48615
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaosa Yuan & Mingjiang Dai & Mengfan Li & Shanshan Zhang & Mingming Zhang, 2022. "Effect of Graphene Oxide and Fly Ash on Frost Resistance of the Steel Fiber Reinforced Concrete," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    2. Songmei Wu & Tanvir Qureshi & Guorui Wang, 2021. "Application of Graphene in Fiber-Reinforced Cementitious Composites: A Review," Energies, MDPI, vol. 14(15), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      JEL classification:

      • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
      • Z0 - Other Special Topics - - General

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jmsrjl:v:12:y:2023:i:1:p:22-35. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.