IDEAS home Printed from https://ideas.repec.org/a/ibn/jggjnl/v12y2022i2p1.html
   My bibliography  Save this article

Predicted Responses of Beaches, Bays, and Inner-Shelf Sand Supplies to Potential Sea Level Rise (0.5-1.0 m) in Three Small Littoral Subcells in the High-Wave-Energy Northern Oregon Coast, USA

Author

Listed:
  • Curt D. Peterson
  • Debra L. Doyle
  • Charles L. Rosenfeld
  • Kara E.P. Kingen

Abstract

Three small subcells (Nehalem, Tillamook, and Netarts) totaling ~55 km shoreline length in the high-wave energy northern Oregon coast are evaluated for potential beach sand loss from sea level rise (SLR) of 0.5–1.0 m during the next century. The predicted erosion is based on beach sand displacement from the narrow beaches (average ~120 m width) to increased submarine accommodation spaces in the innermost-shelf (to 30 m water depth) and in the subcell estuaries (Tillamook Bay, Netarts Bay, and Nehalem Bay), following predicted near-future SLR. Beach sand sources from local rivers, paleo-shelf deposits, and/or sea cliff retreat are discriminated by distinctive heavy-mineral tracers. Modern beach sands in the study area are derived from river sand (~75 %) and paleo-shelf sand (~25 %). The supplies of paleo-shelf sand to the beaches have largely diminished in late-Holocene time. The river-enriched beach sands have been transported offshore to the inner-shelf (0–50 m water depth) to fill increasing accommodation space in the inner-shelf during latest-Holocene conditions of relative SLR (1.0 m ka-1). To evaluate the beach sand response to future SLR, representative beach profiles (n=17) and intervening beach segment distances were compiled to yield beach sand volumes above mean lower low water (MLLW) or shallower wave-cut platforms ‘bedrock’. Across-shore cross-sectional areas, as averaged for each subcell, are as follows; Cannon Beach (304 m2), Tillamook (683 m2), and Netarts (227 m2). Littoral sand displacements to the adjacent innermost-shelf (to 30 m water depth) and the marine-dominated areas of the three estuaries are based on assumed vertical sand accretion rates of 1.0 m per century and a conservative value of 0.5 m per century. The filling of such submarine accommodation spaces will displace all active-beach sand reserves in all three subcells for either the 1.0 m or 0.5 m thickness accommodation space scenarios. Large beach sand deficits, primarily from the filling of offshore accommodation spaces, could cause further retreat of soft-shorelines, including barrier spit and beach plain/dune deposits, in the Tillamook subcell (150-280 m) and in the southern half of the Netarts subcell (370-770 m). The accommodation space approach used to predict beach sand volume loss from future SLR should have broad applicability in complex littoral systems worldwide.

Suggested Citation

  • Curt D. Peterson & Debra L. Doyle & Charles L. Rosenfeld & Kara E.P. Kingen, 2022. "Predicted Responses of Beaches, Bays, and Inner-Shelf Sand Supplies to Potential Sea Level Rise (0.5-1.0 m) in Three Small Littoral Subcells in the High-Wave-Energy Northern Oregon Coast, USA," Journal of Geography and Geology, Canadian Center of Science and Education, vol. 12(2), pages 1-1, December.
  • Handle: RePEc:ibn:jggjnl:v:12:y:2022:i:2:p:1
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jgg/article/download/0/0/43637/45834
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jgg/article/view/0/43637
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jggjnl:v:12:y:2022:i:2:p:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.