IDEAS home Printed from https://ideas.repec.org/a/ibn/ijcjnl/v14y2022i1p30-40.html
   My bibliography  Save this article

Steady State Heat Transport by Microbubble Dispersions Mediating Convection With Phase Change Dynamics

Author

Listed:
  • William B Zimmerman

Abstract

A new theory for additional heat transfer convected by a dispersed phase of microbubbles was posited recently. An additional convection term in the heat transport equation reflects the latent heat of vapor of the liquid carried by the microbubbles from hot zones that vaporize more liquid to cold zones where condensation releases the latent heat. This theory was shown to be consistent with analysis of observations of freezing times measured by in the original Mpemba effect study, by inferring heat transfer coefficients fitted by Newton’s law of cooling. In this paper, the scaling analysis, leading to the proposition that the additional heat flux is proportional to the phase fraction of microbubbles, is tested by steady state solutions of the canonical hot wall / cold wall buoyant convection problem. For phase fractions 0.02 and 0.1, the maximum ratio of additional Nusselt number emergent is five, occurring in the microfluidic regime. Increasing the characteristic length of the domain maintains the monotonicity of the increase in additional Nusselt number ratio over the case of no microbubbles present. The additional heat transfer due to the microbubble dispersion, ranging from 5-50%, is found to be nearly proportional to the microbubble phase fraction for the range of 0.02 to 0.2. However, larger characteristic lengths introduce insufficient heat flux from the hot wall to maintain a “driven cavity” flow structure, so that the steady state structure that emerges is a stable stratification with thin boundary layers near the hot and cold walls, with weak shear flow convection. The stable stratification resultant at higher characteristic lengths suppresses the additional heat flux due to microbubble mediation, but only moderately deviating from proportionality.

Suggested Citation

  • William B Zimmerman, 2022. "Steady State Heat Transport by Microbubble Dispersions Mediating Convection With Phase Change Dynamics," International Journal of Chemistry, Canadian Center of Science and Education, vol. 14(1), pages 30-40, May.
  • Handle: RePEc:ibn:ijcjnl:v:14:y:2022:i:1:p:30-40
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/ijc/article/download/0/0/47068/50365
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/ijc/article/view/0/47068
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijcjnl:v:14:y:2022:i:1:p:30-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.